@misc{HixsonSharmaKainzetal.2015, author = {Hixson, Stefanie M. and Sharma, Bhanu and Kainz, Martin J. and Wacker, Alexander and Arts, Michael T.}, title = {Production, distribution, and abundance of long-chain omega-3 polyunsaturated fatty acids: a fundamental dichotomy between freshwater and terrestrial ecosystems}, series = {Environmental reviews = Dossiers environnement}, volume = {23}, journal = {Environmental reviews = Dossiers environnement}, number = {4}, publisher = {NRC Research Press}, address = {Ottawa}, issn = {1208-6053}, doi = {10.1139/er-2015-0029}, pages = {414 -- 424}, year = {2015}, abstract = {Long-chain polyunsaturated fatty acids (LC-PUFA) are critical for the health of aquatic and terrestrial organisms; therefore, understanding the production, distribution, and abundance of these compounds is imperative. Although the dynamics of LC-PUFA production and distribution in aquatic environments has been well documented, a systematic and comprehensive comparison to LC-PUFA in terrestrial environments has not been rigorously investigated. Here we use a data synthesis approach to compare and contrast fatty acid profiles of 369 aquatic and terrestrial organisms. Habitat and trophic level were interacting factors that determined the proportion of individual omega-3 (n-3) or omega-6 (n-6) PUFA in aquatic and terrestrial organisms. Higher total n-3 content compared with n-6 PUFA and a strong prevalence of the n-3 PUFA eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) characterized aquatic versus terrestrial organisms. Conversely, terrestrial organisms had higher linoleic acid (LNA) and alpha-linolenic acid (ALA) contents than aquatic organisms; however, the ratio of ALA: LNA was higher in aquatic organisms. The EPA + DHA content was higher in aquatic animals than terrestrial organisms, and increased from algae to invertebrates to vertebrates in the aquatic environment. An analysis of covariance (ANCOVA) revealed that fatty acid composition was highly dependent on the interaction between habitat and trophic level. We conclude that freshwater ecosystems provide an essential service through the production of n-3 LC-PUFA that are required to maintain the health of terrestrial organisms including humans.}, language = {en} } @article{MasigolKhodaparastMostowfizadehGhalamfarsaetal.2020, author = {Masigol, Hossein and Khodaparast, Seyed Akbar and Mostowfizadeh-Ghalamfarsa, Reza and Rojas-Jimenez, Keilor and Woodhouse, Jason Nicholas and Neubauer, Darshan and Grossart, Hans-Peter}, title = {Taxonomical and functional diversity of Saprolegniales in Anzali lagoon, Iran}, series = {Aquatic Ecology}, volume = {54}, journal = {Aquatic Ecology}, number = {1}, publisher = {Springer Science}, address = {Dordrecht}, issn = {1573-5125}, doi = {10.1007/s10452-019-09745-w}, pages = {323 -- 336}, year = {2020}, abstract = {Studies on the diversity, distribution and ecological role of Saprolegniales (Oomycota) in freshwater ecosystems are currently receiving attention due to a greater understanding of their role in carbon cycling in various aquatic ecosystems. In this study, we characterized several Saprolegniales species isolated from Anzali lagoon, Gilan province, Iran, using morphological and molecular methods. Four species of Saprolegnia were identified, including S. anisospora and S. diclina as first reports for Iran, as well as Achlya strains, which were closely related to A. bisexualis, A. debaryana and A. intricata. Evaluation of the ligno-, cellulo- and chitinolytic activities was performed using plate assay methods. Most of the Saprolegniales isolates were obtained in autumn, and nearly 50\% of the strains showed chitinolytic and cellulolytic activities. However, only a few Saprolegniales strains showed lignolytic activities. This study has important implications for better understanding the ecological niche of oomycetes, and to differentiate them from morphologically similar, but functionally different aquatic fungi in freshwater ecosystems.}, language = {en} }