@misc{SultanaSiegKellermannetal.2018, author = {Sultana, Zakia and Sieg, Tobias and Kellermann, Patric and M{\"u}ller, Meike and Kreibich, Heidi}, title = {Assessment of business interruption of flood-affected companies using random forests}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {939}, issn = {1866-8372}, doi = {10.25932/publishup-45977}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-459778}, pages = {18}, year = {2018}, abstract = {Losses due to floods have dramatically increased over the past decades, and losses of companies, comprising direct and indirect losses, have a large share of the total economic losses. Thus, there is an urgent need to gain more quantitative knowledge about flood losses, particularly losses caused by business interruption, in order to mitigate the economic loss of companies. However, business interruption caused by floods is rarely assessed because of a lack of sufficiently detailed data. A survey was undertaken to explore processes influencing business interruption, which collected information on 557 companies affected by the severe flood in June 2013 in Germany. Based on this data set, the study aims to assess the business interruption of directly affected companies by means of a Random Forests model. Variables that influence the duration and costs of business interruption were identified by the variable importance measures of Random Forests. Additionally, Random Forest-based models were developed and tested for their capacity to estimate business interruption duration and associated costs. The water level was found to be the most important variable influencing the duration of business interruption. Other important variables, relating to the estimation of business interruption duration, are the warning time, perceived danger of flood recurrence and inundation duration. In contrast, the amount of business interruption costs is strongly influenced by the size of the company, as assessed by the number of employees, emergency measures undertaken by the company and the fraction of customers within a 50 km radius. These results provide useful information and methods for companies to mitigate their losses from business interruption. However, the heterogeneity of companies is relatively high, and sector-specific analyses were not possible due to the small sample size. Therefore, further sector-specific analyses on the basis of more flood loss data of companies are recommended.}, language = {en} } @article{SultanaSiegKellermannetal.2018, author = {Sultana, Zakia and Sieg, Tobias and Kellermann, Patric and M{\"u}ller, Meike and Kreibich, Heidi}, title = {Assessment of business interruption of flood-affected companies using random forests}, series = {Water}, volume = {10}, journal = {Water}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {2073-4441}, doi = {10.3390/w10081049}, pages = {16}, year = {2018}, abstract = {Losses due to floods have dramatically increased over the past decades, and losses of companies, comprising direct and indirect losses, have a large share of the total economic losses. Thus, there is an urgent need to gain more quantitative knowledge about flood losses, particularly losses caused by business interruption, in order to mitigate the economic loss of companies. However, business interruption caused by floods is rarely assessed because of a lack of sufficiently detailed data. A survey was undertaken to explore processes influencing business interruption, which collected information on 557 companies affected by the severe flood in June 2013 in Germany. Based on this data set, the study aims to assess the business interruption of directly affected companies by means of a Random Forests model. Variables that influence the duration and costs of business interruption were identified by the variable importance measures of Random Forests. Additionally, Random Forest-based models were developed and tested for their capacity to estimate business interruption duration and associated costs. The water level was found to be the most important variable influencing the duration of business interruption. Other important variables, relating to the estimation of business interruption duration, are the warning time, perceived danger of flood recurrence and inundation duration. In contrast, the amount of business interruption costs is strongly influenced by the size of the company, as assessed by the number of employees, emergency measures undertaken by the company and the fraction of customers within a 50 km radius. These results provide useful information and methods for companies to mitigate their losses from business interruption. However, the heterogeneity of companies is relatively high, and sector-specific analyses were not possible due to the small sample size. Therefore, further sector-specific analyses on the basis of more flood loss data of companies are recommended.}, language = {en} } @article{SiegThieken2022, author = {Sieg, Tobias and Thieken, Annegret}, title = {Improving flood impact estimations}, series = {Environmental research letters}, volume = {17}, journal = {Environmental research letters}, number = {6}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/ac6d6c}, pages = {16}, year = {2022}, abstract = {A reliable estimation of flood impacts enables meaningful flood risk management and rapid assessments of flood impacts shortly after a flood. The flood in 2021 in Central Europe and the analysis of its impacts revealed that these estimations are still inadequate. Therefore, we investigate the influence of different data sets and methods aiming to improve flood impact estimates. We estimated economic flood impacts to private households and companies for a flood event in 2013 in Germany using (a) two different flood maps, (b) two approaches to map exposed objects based on OpenStreetMap and the Basic European Asset Map, (c) two different approaches to estimate asset values, and (d) tree-based models and Stage-Damage-Functions to describe the vulnerability. At the macro scale, water masks lead to reasonable impact estimations. At the micro and meso-scale, the identification of affected objects by means of water masks is insufficient leading to unreliable estimations. The choice of exposure data sets is most influential on the estimations. We find that reliable impact estimations are feasible with reported numbers of flood-affected objects from the municipalities. We conclude that more effort should be put in the investigation of different exposure data sets and the estimation of asset values. Furthermore, we recommend the establishment of a reporting system in the municipalities for a fast identification of flood-affected objects shortly after an event.}, language = {en} }