@unpublished{SeelaenderLavianoBusquetsetal.2015, author = {Seelaender, Marilia and Laviano, A. and Busquets, S. and P{\"u}schel, Gerhard Paul and Margaria, T. and Batista Jr., Miguel Luiz}, title = {Inflammation in Cachexia}, series = {Mediators of inflammation}, journal = {Mediators of inflammation}, publisher = {Hindawi Publishing Corp.}, address = {New York}, issn = {0962-9351}, doi = {10.1155/2015/536954}, pages = {2}, year = {2015}, language = {en} } @article{PatheNeuschaeferRubeNeuschaeferRubeGenzetal.2015, author = {Pathe-Neuschaefer-Rube, Andrea and Neuschaefer-Rube, Frank and Genz, Lara and P{\"u}schel, Gerhard Paul}, title = {Botulinum Neurotoxin Dose-Dependently Inhibits Release of Neurosecretory Vesicle-Targeted Luciferase from Neuronal Cells}, series = {Alternatives to animal experimentation : ALTEX ; a journal for new paths in biomedical science}, volume = {32}, journal = {Alternatives to animal experimentation : ALTEX ; a journal for new paths in biomedical science}, number = {4}, publisher = {Springer}, address = {Heidelberg}, issn = {1868-596X}, pages = {297 -- 306}, year = {2015}, abstract = {Botulinum toxin is a bacterial toxin that inhibits neurotransmitter release from neurons and thereby causes a flaccid paralysis. It is used as drug to treat a number of serious ailments and, more frequently, for aesthetic medical interventions. Botulinum toxin for pharmacological applications is isolated from bacterial cultures. Due to partial denaturation of the protein, the specific activity of these preparations shows large variations. Because of its extreme potential toxicity, pharmacological preparations must be carefully tested for their activity. For the current gold standard, the mouse lethality assay, several hundred thousand mice are killed per year. Alternative methods have been developed that suffer from one or more of the following deficits: In vitro enzyme assays test only the activity of the catalytic subunit of the toxin. Enzymatic and cell based immunological assays are specific for just one of the different serotypes. The current study takes a completely different approach that overcomes these limitations: Neuronal cell lines were stably transfected with plasmids coding for luciferases of different species, which were N-terminally tagged with leader sequences that redirect the luciferase into neuro-secretory vesicles. From these vesicles, luciferases were released upon depolarization of the cells. The depolarization-dependent release was efficiently inhibited by botulinum toxin in a concentration range (1 to 100 pM) that is used in pharmacological preparations. The new assay might thus be an alternative to the mouse lethality assay and the immunological assays already in use.}, language = {en} } @article{SchraplauScheweNeuschaeferRubeetal.2015, author = {Schraplau, Anne and Schewe, Bettina and Neusch{\"a}fer-Rube, Frank and Ringel, Sebastian and Neuber, Corinna and Kleuser, Burkhard and P{\"u}schel, Gerhard Paul}, title = {Enhanced thyroid hormone breakdown in hepatocytes by mutual induction of the constitutive androstane receptor (CAR, NR1I3) and arylhydrocarbon receptor by benzo[a]pyrene and phenobarbital}, series = {Toxicology}, volume = {328}, journal = {Toxicology}, publisher = {Elsevier}, address = {Clare}, issn = {0300-483X}, doi = {10.1016/j.tox.2014.12.004}, pages = {21 -- 28}, year = {2015}, abstract = {Xenobiotics may interfere with the hypothalamic-pituitary-thyroid endocrine axis by inducing enzymes that inactivate thyroid hormones and thereby reduce the metabolic rate. This induction results from an activation of xeno-sensing nuclear receptors. The current study shows that benzo[a]pyrene, a frequent contaminant of processed food and activator of the arylhydrocarbon receptor (AhR) activated the promoter and induced the transcription of the nuclear receptor constitutive androstane receptor (CAR, NR1I3) in rat hepatocytes. Likewise, phenobarbital induced the AhR transcription. This mutual induction of the nuclear receptors enhanced the phenobarbital-dependent induction of the prototypic CAR target gene Cyp2b1 as well as the AhR-dependent induction of UDP-glucuronosyltransferases. In both cases, the induction by the combination of both xenobiotics was more than the sum of the induction by either substance alone. By inducing the AhR, phenobarbital enhanced the benzo[a]pyrene-dependent reduction of thyroid hormone half-life and the benzo[a]pyrene-dependent increase in the rate of thyroid hormone glucuronide formation in hepatocyte cultures. CAR ligands might thus augment the endocrine disrupting potential of AhR activators by an induction of the AhR. (C) 2014 Elsevier Ireland Ltd. All rights reserved.}, language = {en} } @article{CamargodosReisRiccardiTeixeiraRibeiroetal.2015, author = {Camargo, Rodolfo Gonzalez and dos Reis Riccardi, Daniela Mendes and Teixeira Ribeiro, Henrique Quintas and Carnevali Junior, Luiz Carlos and de Matos-Neto, Emidio Marques and Enjiu, Lucas and Neves, Rodrigo Xavier and Carola Correia Lima, Joanna Darck and Figueredo, Raquel Galvao and Martins de Alcantara, Paulo Sergio and Maximiano, Linda and Otoch, Jose and Batista Jr., Miguel Luiz and P{\"u}schel, Gerhard Paul and Seelaender, Marilia}, title = {NF-kappa Bp65 and Expression of Its Pro-Inflammatory Target Genes Are Upregulated in the Subcutaneous Adipose Tissue of Cachectic Cancer Patients}, series = {Nutrients}, volume = {7}, journal = {Nutrients}, number = {6}, publisher = {MDPI}, address = {Basel}, issn = {2072-6643}, doi = {10.3390/nu7064465}, pages = {4465 -- 4479}, year = {2015}, abstract = {Cancer cachexia, of which the most notable symptom is severe and rapid weight loss, is present in the majority of patients with advanced cancer. Inflammatory mediators play an important role in the development of cachexia, envisaged as a chronic inflammatory syndrome. The white adipose tissue (WAT) is one of the first compartments affected in cancer cachexia and suffers a high rate of lipolysis. It secretes several cytokines capable of directly regulating intermediate metabolism. A common pathway in the regulation of the expression of pro-inflammatory cytokines in WAT is the activation of the nuclear transcription factor kappa-B (NF-B). We have examined the gene expression of the subunits NF-Bp65 and NF-Bp50, as well as NF-Bp65 and NF-Bp50 binding, the gene expression of pro-inflammatory mediators under NF-B control (IL-1, IL-6, INF-, TNF-, MCP-1), and its inhibitory protein, nuclear factor of kappa light polypeptide gene enhancer in B-cells inhibitor, alpha (IB-). The observational study involved 35 patients (control group, n = 12 and cancer group, n = 23, further divided into cachectic and non-cachectic). NF-Bp65 and its target genes expression (TNF-, IL-1, MCP-1 and IB-) were significantly higher in cachectic cancer patients. Moreover, NF-Bp65 gene expression correlated positively with the expression of its target genes. The results strongly suggest that the NF-B pathway plays a role in the promotion of WAT inflammation during cachexia.}, language = {en} } @article{NeuschaeferRubeSchraplauScheweetal.2015, author = {Neuschaefer-Rube, Frank and Schraplau, Anne and Schewe, Bettina and Lieske, Stefanie and Kruetzfeldt, Julia-Mignon and Ringel, Sebastian and Henkela, Janin and Birkenfeld, Andreas L. and P{\"u}schel, Gerhard Paul}, title = {Arylhydrocarbon receptor-dependent mIndy (SIc13a5) induction as possible contributor to benzo[a]pyrene-induced lipid accumulation in hepatocytes}, series = {Toxicology}, volume = {337}, journal = {Toxicology}, publisher = {Elsevier}, address = {Clare}, issn = {0300-483X}, doi = {10.1016/j.tox.2015.08.007}, pages = {1 -- 9}, year = {2015}, abstract = {Non-alcoholic fatty liver disease is a growing problem in industrialized and developing countries. Hepatic lipid accumulation is the result of an imbalance between fatty acid uptake, fatty acid de novo synthesis, beta-oxidation and secretion of triglyceride-rich lipoproteins from the hepatocyte. A central regulator of hepatic lipid metabolism is cytosolic citrate that can either be derived from the mitochondrium or be taken up from the blood via the plasma membrane sodium citrate transporter NaCT, the product of the mammalian INDY gene (SLC13A5). mINDY ablation protects against diet-induced steatosis whereas mINDY expression is increased in patients with hepatic steatosis. Diet-induced hepatic steatosis is also enhanced by activation of the arylhyrocarbon receptor (AhR) both in humans and animal models. Therefore, the hypothesis was tested whether the mINDY gene might be a target of the AhR. In accordance with such a hypothesis, the AhR activator benzo[a]pyrene induced the mINDY expression in primary cultures of rat hepatocytes in an AhR-dependent manner. This induction resulted in an increased citrate uptake and citrate incorporation into lipids which probably was further enhanced by the benzo[a]pyrene-dependent induction of key enzymes of fatty acid synthesis. A potential AhR binding site was identified in the mINDY promoter that appears to be conserved in the human promoter. Elimination or mutation of this site largely abolished the activation of the mINDY promoter by benzo[a]pyrene. This study thus identified the mINDY as an AhR target gene. AhR-dependent induction of the mINDY gene might contribute to the development of hepatic steatosis. (C) 2015 Elsevier Ireland Ltd. All rights reserved.}, language = {en} }