@article{NeuschaeferRubeHermosillaRehwaldetal.2004, author = {Neusch{\"a}fer-Rube, Frank and Hermosilla, Ricardo and Rehwald, Matthias and Ronnstrand, Lars and Sch{\"u}lein, Ralf and Wernstedt, Christer and P{\"u}schel, Gerhard Paul}, title = {Identification of a Ser/Thr cluster in the C-terminal domain of the human prostaglandin receptor EP4 that is essential for agonist-induced beta-arrestin1 recruitment but differs from the apparent principal phosphorylation site}, year = {2004}, abstract = {hEP4-R (human prostaglandin E2 receptor, subtype EP4) is a G(s)-linked heterotrimeric GPCR (G-protein-coupled receptor). It undergoes agonist-induced desensitization and internalization that depend on the presence of its C- terminal domain. Desensitization and internalization of GPCRs are often linked to agonist-induced beta-arrestin complex formation, which is stabilized by phosphorylation. Subsequently beta-arrestin uncouples the receptor from its G-protein and links it to the endocytotic machinery. The C-terminal domain of hEP4-R contains 38 Ser/Thr residues that represent potential phosphorylation sites. The present study aimed to analyse the relevance of these Ser/Thr residues for agonist- induced phosphorylation, interaction with beta-arrestin and internalization. In response to agonist treatment, hEP4-R was phosphorylated. By analysis of proteolytic phosphopeptides of the wild-type receptor and mutants in which groups of Ser/Thr residues had been replaced by Ala, the principal phosphorylation site was mapped to a Ser/Thr-containing region comprising residues 370-382, the presence of which was necessary and sufficient to obtain full agonist-induced phosphorylation. A cluster of Ser/Thr residues (Ser-389-Ser-390-Thr-391-Ser-392) distal to this site, but not the principal phosphorylation site, was essential to allow agonist-induced recruitment of beta-arrestin1. However, phosphorylation greatly enhanced the stability of the beta-arrestin1-receptor complexes. For maximal agonist-induced internalization, phosphorylation of the principal phosphorylation site was not required, but both beta-arrestin1 recruitment and the presence of Ser/Thr residues in the distal half of the C-terminal domain were necessary.}, language = {en} } @article{Pueschel2004, author = {P{\"u}schel, Gerhard Paul}, title = {Control of hepatocyte metabolism by sympathetic and parasympathetic hepatic nerves}, year = {2004}, abstract = {More than any other organ, the liver contributes to maintaining metabolic equilibrium of the body, most importantly of glucose homeostasis. It can store or release large quantities of glucose according to changing demands. This homeostasis is controlled by circulating hormones and direct innervation of the liver by autonomous hepatic nerves. Sympathetic hepatic nerves can increase hepatic glucose output; they appear, however, to contribute little to the stimulation of hepatic glucose output under physiological conditions. Parasympathetic hepatic nerves potentiate the insulin-dependent hepatic glucose extraction when a portal glucose sensor detects prandial glucose delivery from the gut. In addition, they might coordinate the hepatic and extrahepatic glucose utilization to prevent hypoglycemia and, at the same time, warrant efficient disposal of excess glucose.}, language = {en} } @article{PatheNeuschaeferRubeNeuschaeferRubePueschel2004, author = {Pathe-Neusch{\"a}fer-Rube, Andrea and Neusch{\"a}fer-Rube, Frank and P{\"u}schel, Gerhard Paul}, title = {G protein coupling control by the ERC-motif in the proximal part of the second intracellular loop and the C- terminal domain of the human prostaglandin F-2A receptor (FP receptor)}, issn = {0028-1298}, year = {2004}, language = {en} } @article{NeuschaeferRubeHermosillaKunaetal.2004, author = {Neusch{\"a}fer-Rube, Frank and Hermosilla, Ricardo and Kuna, Manuela and Pathe-Neuschaefer-Rube, Andrea and P{\"u}schel, Gerhard Paul}, title = {Agonist-induced desensitization of rat prostaglandin EP3 receptor isoforms}, issn = {0028-1298}, year = {2004}, language = {en} }