@article{GoettgensHusserKamannetal.2019, author = {G{\"o}ttgens, Fabian and Husser, Tim-Oliver and Kamann, Sebastian and Dreizler, Stefan and Giesers, Benjamin and Kollatschny, Wolfram and Weilbacher, Peter Michael and Roth, Martin M. and Wendt, Martin}, title = {A stellar census in globular clusters with MUSE: A spectral catalogue of emission-line sources}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {631}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201936485}, pages = {16}, year = {2019}, abstract = {Aims. Globular clusters produce many exotic stars due to a much higher frequency of dynamical interactions in their dense stellar environments. Some of these objects were observed together with several hundred thousand other stars in our MUSE survey of 26 Galactic globular clusters. Assuming that at least a few exotic stars have exotic spectra (i.e. spectra that contain emission lines), we can use this large spectroscopic data set of over a million stellar spectra as a blind survey to detect stellar exotica in globular clusters. Methods. To detect emission lines in each spectrum, we modelled the expected shape of an emission line as a Gaussian curve. This template was used for matched filtering on the di fferences between each observed 1D spectrum and its fitted spectral model. The spectra with the most significant detections of H alpha emission are checked visually and cross-matched with published catalogues. Results. We find 156 stars with H alpha emission, including several known cataclysmic variables (CV) and two new CVs, pulsating variable stars, eclipsing binary stars, the optical counterpart of a known black hole, several probable sub-subgiants and red stragglers, and 21 background emission-line galaxies. We find possible optical counterparts to 39 X-ray sources, as we detected H alpha emission in several spectra of stars that are close to known positions of Chandra X-ray sources. This spectral catalogue can be used to supplement existing or future X-ray or radio observations with spectra of potential optical counterparts to classify the sources.}, language = {en} } @article{GvaramadzeKniazevOskinova2019, author = {Gvaramadze, V. V. and Kniazev, Alexei Y. and Oskinova, Lida}, title = {Discovery of a putative supernova remnant around the long-period X-ray pulsar SXP 1323 in the Small Magellanic Cloud}, series = {Monthly notices of the Royal Astronomical Society}, volume = {485}, journal = {Monthly notices of the Royal Astronomical Society}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnrasl/slz018}, pages = {L6 -- L10}, year = {2019}, abstract = {We report the discovery of a circular shell centred on the Be X-ray binary (BeXB) SXP 1323 in the Small Magellanic Cloud. The shell was detected in an H α image obtained with the Very Large Telescope. Follow-up spectroscopy with the Southern African Large Telescope showed that the shell expands with a velocity of ≈100kms-1 and that its emission is due to shock excitation. We suggest that this shell is a remnant of the supernova explosion that led to the formation of SXP 1323's neutron star ≈40000 yr ago. SXP 1323 represents the second known case of a BeXB associated with a supernova remnant (the first one is SXP 1062). Interestingly, both of these BeXBs harbour long-period pulsars and are located in a low-metallicity galaxy.}, language = {en} }