@article{AssagraAltafimdoCarmoetal.2020, author = {Assagra, Yuri A.O. and Altafim, Ruy Alberto Pisani and do Carmo, Joao P. and Altafim, Ruy A.C. and Rychkov, Dmitry and Wirges, Werner and Gerhard, Reimund}, title = {A new route to piezo-polymer transducers: 3D printing of polypropylene ferroelectrets}, series = {IEEE transactions on dielectrics and electrical insulation}, volume = {27}, journal = {IEEE transactions on dielectrics and electrical insulation}, number = {5}, publisher = {Inst. of Electr. and Electronics Engineers}, address = {Piscataway}, issn = {1070-9878}, doi = {10.1109/TDEI.2020.008461}, pages = {1668 -- 1674}, year = {2020}, abstract = {Here, a promising approach for producing piezo-polymer transducers in a one-step process is presented. Using 3D-printing technology and polypropylene (PP) filaments, we are able to print a two-layered film structure with regular cavities of precisely controlled size and shape. It is found that the 3D-printed samples exhibit piezoelectric coefficients up to 200 pC/N, similar to those of other PP ferroelectrets, and their temporal and thermal behavior is in good agreement with those known of PP ferroelectrets. The piezoelectric response strongly decreases for applied pressures above 20 kPa, as the pressure in the air-filled cavities strongly influences the overall elastic modulus of ferroelectrets.}, language = {en} } @article{RychkovYablokovRychkov2012, author = {Rychkov, Dmitry and Yablokov, M. and Rychkov, A.}, title = {Chemical and physical surface modification of PTFE films-an approach to produce stable electrets}, series = {Applied physics : A, Materials science \& processing}, volume = {107}, journal = {Applied physics : A, Materials science \& processing}, number = {3}, publisher = {Springer}, address = {New York}, issn = {0947-8396}, doi = {10.1007/s00339-012-6834-5}, pages = {589 -- 596}, year = {2012}, abstract = {The thermal stability of positive charge has been investigated in chemically and physically treated polytetrafluoroethylene (PTFE) films. It has been found that virgin films, oriented by the manufacturer, display an increase in thermal stability of positive charge with an increase of the initial value of surface potential. Such an anomalous behavior is explained by the influence of a negative tribocharge, trapped some small distance below the surface. In PTFE samples treated with orthophosphoric acid and with tetraethoxysilane, a considerable improvement of positive charge stability has been achieved, but no influence of the initial value of surface potential has been observed. However, this influence should be kept in mind when comparing charge stability in virgin and modified samples. In nonoriented PTFE films, no influence of the initial value of surface potential on charge stability has been observed. This could be due to the fact that these films did not possess a noticeable negative tribocharge. After the treatment in glow-discharge defluorination, oxidation and appearance of polar groups have been detected on the surface. These changes in chemical composition of a PTFE surface resulted in a noticeable improvement in thermal stability of positively charged electrets. This improvement is attributed to the formation of deeper traps on the modified surface.}, language = {en} } @article{WangRychkovGerhard2017, author = {Wang, Jingwen and Rychkov, Dmitry and Gerhard, Reimund}, title = {Chemical modification with orthophosphoric acid enhances surface-charge stability on polypropylene electrets}, series = {Applied physics letters}, volume = {110}, journal = {Applied physics letters}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0003-6951}, doi = {10.1063/1.4983348}, pages = {5}, year = {2017}, abstract = {The low surface-charge stability of polypropylene (PP) frequently limits its application as an electret material. In this paper, we demonstrate how the treatment of PP-film surfaces with orthophosphoric acid (H3PO4) enhances their charge stability. To discriminate between the effects of chemical modification and thermal treatment, as-received and annealed PP films are used as reference samples. The electret properties of treated and non-treated PP films are characterized with thermally stimulated discharge (TSD) and isothermal surface-potential decay (ISPD) experiments, from which considerable improvement in thermal and temporal charge stability is observed for samples modified with H3PO4. The half-value temperature (T-1/2) observed on TSD curves of chemically treated PP increases to 131 and 145 degrees C for positive and negative charges, respectively. The enhancement might be attributed to the phosphoric compounds detected on the H3PO4-modified surfaces via attenuated-total-reflection infrared spectroscopy. Deeper surface traps formed at the "foreign" phosphorus-containing structures are able to capture the charges over longer time periods and at higher temperatures, thus leading to significant improvements in the temporal and thermal surface-charge stabilities of PP electrets. Published by AIP Publishing.}, language = {en} } @article{RychkovKuznetsovRychkov2011, author = {Rychkov, Dmitry and Kuznetsov, Alexey and Rychkov, Andrey}, title = {Electret properties of polyethylene and polytetrafluoroethylene films with chemically modified surface}, series = {IEEE transactions on dielectrics and electrical insulation}, volume = {18}, journal = {IEEE transactions on dielectrics and electrical insulation}, number = {1}, publisher = {Inst. of Electr. and Electronics Engineers}, address = {Piscataway}, issn = {1070-9878}, doi = {10.1109/TDEI.2011.5704487}, pages = {8 -- 14}, year = {2011}, abstract = {This paper investigates the effect of chemical surface modification of polytetrafluoroethylene (PTFE) and low density polyethylene (LDPE) films on their electret properties. PTFE films were subjected to wet treatment with three different chemicals: orthophosphoric acid, tetrabutyl titanate and tetraethoxysilane. The technique based on the principles of molecular layer deposition (MLD) method was used to modify the surface of LDPE films with phosphorus trichloride vapors. The surfaces of the films were then corona charged, and the electret charge stability was studied by means of isothermal and thermally stimulated surface potential decay. Both PTFE and LDPE films, after the surface treatment, displayed a considerable enhancement in the charge stability compared to the virgin samples. It is important to note that the enhancement of the charge stability was achieved in the positively charged PTFE films, a result important to practical applications. We attribute this effect of charge stabilization to the formation of new energetically deep traps on the modified surface. Decrease in molecular mobility, due to attachment of new chemical structures to the surface macromolecules, may also contribute to the overall growth of the charge stability.}, language = {en} } @article{RychkovGerhardIvanovetal.2012, author = {Rychkov, Dmitry and Gerhard, Reimund and Ivanov, Vadim and Rychkov, Andrey}, title = {Enhanced electret charge stability on Polyethylene Films treated with Titanium-Tetrachloride vapor}, series = {IEEE transactions on dielectrics and electrical insulation}, volume = {19}, journal = {IEEE transactions on dielectrics and electrical insulation}, number = {4}, publisher = {Inst. of Electr. and Electronics Engineers}, address = {Piscataway}, issn = {1070-9878}, pages = {1305 -- 1311}, year = {2012}, abstract = {Low-density polyethylene (LDPE) films have been treated with titanium-tetrachloride vapor by means of the molecular-layer-deposition method. It is shown that such a treatment leads to a considerable improvement of the electret properties for both positively and negatively charged films. The temperature stability of the electret homo-charge has been increased by approximately 60 degrees C. At the same time, the temporal stability of charge is also considerably improved. Modified low-density polyethylene films show no "cross-over phenomenon" when charged to higher voltages. Thus, it is now possible to produce electrets from polyethylene films with high initial charge densities, but without a strongly reduced charge stability. The influence of a chemical treatment with titanium-tetrachloride vapor on charge injection from aluminum electrodes into polyethylene films was also investigated. It is found that the interface between an aluminum electrode and a modified LDPE surface layer has different injection properties for positive and negative charges. Electrons can be injected across the modified interface, whereas injection of holes is either very limited or non-existent.}, language = {en} } @article{RychkovRychkovEfimovetal.2013, author = {Rychkov, Dmitry and Rychkov, A. and Efimov, N. and Malygin, A. and Gerhard, Reimund}, title = {Higher stabilities of positive and negative charge on tetrafluoroethylene-hexafluoropropylene copolymer (FEP) electrets treated with titanium-tetrachloride vapor}, series = {Applied physics : A, Materials science \& processing}, volume = {112}, journal = {Applied physics : A, Materials science \& processing}, number = {2}, publisher = {Springer}, address = {New York}, issn = {0947-8396}, doi = {10.1007/s00339-013-7821-1}, pages = {283 -- 287}, year = {2013}, abstract = {Tetrafluoroethylene-hexafluoropropylene copolymer (FEP) films were treated with titanium-tetrachloride vapor in a molecular-layer deposition process. As a result of the surface treatment, significant improvements of the thermal and temporal charge stability were observed. Charge-decay measurements revealed enhancements of the half-value temperatures and the relaxation times of positively charged FEP electrets by at least 120 A degrees C and two orders of magnitude, respectively. Beyond previous publications on fluoropolymer electrets with surface modification, we here report enhanced charge stabilities of the FEP films charged in negative as well as in positive corona discharges. Even though the improvement for negatively charged FEP films is moderate (half-value temperature about 20 A degrees C higher), our experiments show that the asymmetry in positive and negative charge stability that is typical for FEP electrets can be overcome by means of chemical surface treatments. The results are discussed in the context of the formation of modified surface layers with enhanced charge-trapping properties.}, language = {en} } @article{McCarthyStoyanovRychkovetal.2012, author = {McCarthy, Denis N. and Stoyanov, Hristiyan and Rychkov, Dmitry and Ragusch, Huelya and Melzer, Michael and Kofod, Guggi}, title = {Increased permittivity nanocomposite dielectrics by controlled interfacial interactions}, series = {Composites science and technology}, volume = {72}, journal = {Composites science and technology}, number = {6}, publisher = {Elsevier}, address = {Oxford}, issn = {0266-3538}, doi = {10.1016/j.compscitech.2012.01.026}, pages = {731 -- 736}, year = {2012}, abstract = {The use of nanoparticles in polymer composite dielectrics has promised great improvements, but useful results have been elusive. Here, the importance of the interfacial interactions between the nanoparticles and the polymer matrix are investigated in TiO2 nanocomposites for dielectric materials using surface functionalisation. The interface is observed to dominate the nanocomposite properties and leads to a threefold increase in permittivity at volume fractions as low as 10\%. Surface functionalisation of the filler nanoparticles with silanes allows control of this interface, avoiding significant degradation of the other important material properties, particularly electrical breakdown strength, and resulting in a material that is demonstrated successfully as an active material in a dielectric elastomer actuator application with increased work output compared to the pure polymer. Although further permittivity increases are observed when the interface regions have formed a percolation network, the other material properties deteriorate. The observation of percolation behaviour allows the interface thickness to be estimated.}, language = {en} } @article{RychkovGerhardKuznetsovetal.2018, author = {Rychkov, Dmitry and Gerhard, Reimund and Kuznetsov, Alexey and Rychkov, Andrey}, title = {Influence of charge density on the trap energy spectrum in fluoroethylenepropylene copolymer films with chemically modified surfaces}, series = {IEEE transactions on dielectrics and electrical insulation}, volume = {25}, journal = {IEEE transactions on dielectrics and electrical insulation}, number = {3}, publisher = {Inst. of Electr. and Electronics Engineers}, address = {Piscataway}, issn = {1070-9878}, doi = {10.1109/TDEI.2018.007437}, pages = {840 -- 844}, year = {2018}, abstract = {Tetrafluoroethylene-hexafluoropropylene copolymer (FEP) films were treated with titanium-tetrachloride vapor by means of molecular-layer deposition. The treatment leads to considerable improvements of the electret-charge stability on positively charged films. A slight improvement is also observed for negatively charged films. In line with our previous findings, we attribute the improvement in electret properties to the formation of deeper traps on the chemically modified polymer surfaces. Here, we investigate the influence of the charge density on electret stability of FEP films with modified surfaces. Trap-energy spectra obtained from thermally-stimulated-discharge measurements indicate that the charge stability on modified FEP films depends on how the surface traps are populated and on the availability of additional deeper traps.}, language = {en} } @article{AltafimRychkovWirgesetal.2012, author = {Altafim, Ruy Alberto Pisani and Rychkov, Dmitry and Wirges, Werner and Gerhard, Reimund and Basso, Heitor Cury and Altafim, Ruy Alberto Pisani and Melzer, Martin}, title = {Laminated tubular-channel ferroelectret systems from low-density Polyethylene Films and from Fluoroethylene-propylene Copolymer Films - A comparison}, series = {IEEE transactions on dielectrics and electrical insulation}, volume = {19}, journal = {IEEE transactions on dielectrics and electrical insulation}, number = {4}, publisher = {Inst. of Electr. and Electronics Engineers}, address = {Piscataway}, issn = {1070-9878}, pages = {1116 -- 1123}, year = {2012}, abstract = {A template-based lamination technique for the manufacture of ferroelectrets from uniform electret films was recently reported. In the present work, this technique is used to prepare similar ferroelectret structures from low-density polyethylene (LDPE) films and from fluoro-ethylene-propylene (FEP) copolymer films. A comparative analysis of the pressure-, temperature-, and frequency-dependent piezoelectric properties has been performed on the two ferroelectret systems. It is observed that the FEP ferroelectrets exhibit better piezoelectric responses and are thermally more stable. The difference between the piezoelectric d(33) coefficients of the two ferroelectret systems is partially explained here by their different elastic moduli. The anti-resonance peaks of both structures have been investigated by means of dielectric resonance spectroscopy and electroacoustic sound-pressure measurements. A difference of more than 10 kHz is observed between the anti-resonance frequencies of the two ferroelectret systems.}, language = {en} } @article{WangRychkovGerhard2021, author = {Wang, Jingwen and Rychkov, Dmitry and Gerhard, Reimund}, title = {Space-charge electret properties of polypropylene films with transcrystalline or spherulitic structures}, series = {Journal of applied physics : AIP's archival journal for significant new results in applied physics / publ. by the American Institute of Physics}, volume = {129}, journal = {Journal of applied physics : AIP's archival journal for significant new results in applied physics / publ. by the American Institute of Physics}, number = {6}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-8979}, doi = {10.1063/5.0039867}, pages = {7}, year = {2021}, abstract = {Spherulite-related space-charge electret properties of polypropylene (PP) have been widely discussed in the past decades. In the present paper, a less-common crystalline structure in PP-transcrystalline PP-is studied regarding its electret behavior in comparison with the typical spherulitic morphology. Polarized light microscopy and differential scanning calorimetry were employed to characterize the crystallite types and crystallinities of transcrystalline and spherulitic PP. Their electret functionality is investigated by means of thermally stimulated discharge experiments, where the cross-over phenomenon is observed on transcrystalline PP films, whereas surface-potential saturation and undercharging on the surface occur on the spherulitic samples. Besides, an asymmetrical behavior of positive and negative surface-charge stabilities is found on PP with spherulites, the negatively charged spherulitic surfaces show a better charge stability. It is shown that PP electrets are very sensitive to changes in the microscopic crystalline structures and their interfaces as well as in the molecular conformations controlled through adjustments of the respective processing steps. In addition, surface and bulk nanocomposites of PP or low-density polyethylene with inorganic particles are included in the comparison. In view of recent developments in the areas of PP-based electret-fiber filters and cellular-foam ferroelectrets, the observed changes in the charge-storage properties may have particular relevance, as the required film, fiber, or foam processing might significantly modify crystalline morphologies and nano-scale interfaces in PP electrets. Limitations in the charge-storage capabilities of interface structures may also be of interest in the context of high-voltage electrical-insulation materials where reduced space-charge accumulation and slightly increased charge transport can be advantageous.}, language = {en} }