@phdthesis{Yadavalli2014, author = {Yadavalli, Nataraja Sekhar}, title = {Advances in experimental methods to probe surface relief grating formation mechanism in photosensitive materials}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-71213}, school = {Universit{\"a}t Potsdam}, year = {2014}, abstract = {When azobenzene-modified photosensitive polymer films are irradiated with light interference patterns, topographic variations in the film develop that follow the electric field vector distribution resulting in the formation of surface relief grating (SRG). The exact correspondence of the electric field vector orientation in interference pattern in relation to the presence of local topographic minima or maxima of SRG is in general difficult to determine. In my thesis, we have established a systematic procedure to accomplish the correlation between different interference patterns and the topography of SRG. For this, we devise a new setup combining an atomic force microscope and a two-beam interferometer (IIAFM). With this set-up, it is possible to track the topography change in-situ, while at the same time changing polarization and phase of the impinging interference pattern. To validate our results, we have compared two photosensitive materials named in short as PAZO and trimer. This is the first time that an absolute correspondence between the local distribution of electric field vectors of interference pattern and the local topography of the relief grating could be established exhaustively. In addition, using our IIAFM we found that for a certain polarization combination of two orthogonally polarized interfering beams namely SP (↕, ↔) interference pattern, the topography forms SRG with only half the period of the interference patterns. Exploiting this phenomenon we are able to fabricate surface relief structures below diffraction limit with characteristic features measuring only 140 nm, by using far field optics with a wavelength of 491 nm. We have also probed for the stresses induced during the polymer mass transport by placing an ultra-thin gold film on top (5-30 nm). During irradiation, the metal film not only deforms along with the SRG formation, but ruptures in regular and complex manner. The morphology of the cracks differs strongly depending on the electric field distribution in the interference pattern even when the magnitude and the kinetic of the strain are kept constant. This implies a complex local distribution of the opto-mechanical stress along the topography grating. The neutron reflectivity measurements of the metal/polymer interface indicate the penetration of metal layer within the polymer resulting in the formation of bonding layer that confirms the transduction of light induced stresses in the polymer layer to a metal film.}, language = {en} } @phdthesis{Grenzer2007, author = {Grenzer, Marina}, title = {Photoinduced material transport in amorphous azobenzene polymer films}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-15771}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {The role played by azobenzene polymers in the modern photonic, electronic and opto-mechanical applications cannot be underestimated. These polymers are successfully used to produce alignment layers for liquid crystalline fluorescent polymers in the display and semiconductor technology, to build waveguides and waveguide couplers, as data storage media and as labels in quality product protection. A very hot topic in modern research are light-driven artificial muscles based on azobenzene elastomers. The incorporation of azobenzene chromophores into polymer systems via covalent bonding or even by blending gives rise to a number of unusual effects under visible (VIS) and ultraviolet light irradiation. The most amazing effect is the inscription of surface relief gratings (SRGs) onto thin azobenzene polymer films. At least seven models have been proposed to explain the origin of the inscribing force but none of them describes satisfactorily the light induced material transport on the molecular level. In most models, to explain the mass transport over micrometer distances during irradiation at room temperature, it is necessary to assume a considerable degree of photoinduced softening, at least comparable with that at the glass transition. Contrary to this assumption, we have gathered a convincing evidence that there is no considerable softening of the azobenzene layers under illumination. Presently we can surely say that light induced softening is a very weak accompanying effect rather than a necessary condition for the formation of SRGs. This means that the inscribing force should be above the yield point of the azobenzene polymer. Hence, an appropriate approach to describe the formation and relaxation of SRGs is a viscoplastic theory. It was used to reproduce pulse-like inscription of SRGs as measured by VIS light scattering. At longer inscription times the VIS scattering pattern exhibits some peculiarities which can be explained by the appearance of a density grating that will be shown to arise due to the final compressibility of the polymer film. As a logical consequence of the aforementioned research, a thermodynamic theory explaining the light-induced deformation of free standing films and the formation of SRGs is proposed. The basic idea of this theory is that under homogeneous illumination an initially isotropic sample should stretch itself along the polarization direction to compensate the entropy decrease produced by the photoinduced reorientation of azobenzene chromophores. Finally, some ideas about further development of this controversial topic will be discussed.}, language = {en} } @phdthesis{Jelken2020, author = {Jelken, Joachim}, title = {Surface relief and bulk birefringence gratings in photo-sensitive polymer films}, doi = {10.25932/publishup-48398}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-483988}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 194, lxxxi}, year = {2020}, abstract = {This thesis is focused on a better understanding of the formation mechanism of bulk birefringence gratings (BBG) and a surface relief gratings (SRG) in photo-sensitive polymer films. A new set-up is developed enabling the in situ investigation how the polymer film is being structured during irradiation with modulated light. The new aspect of the equipment is that it combines several techniques such as a diffraction efficiency (DE) set-up, an atomic force microscope (AFM) and an optical set-up for controlled illumination of the sample. This enables the simultaneous acquiring and differentiation of both gratings (BBG and SRG), while changing the irradiation conditions in desired way. The dissertation is based on five publications. The first publication (I) is focused on the description of the set-up and interpretation of the measured data. A fine structure within the 1st-order diffraction spot is observed, which is a result of the inhomogeneity of the inscribed gratings. In the second publication (II) the interplay of BBG and SRG in the DE is discussed. It has been found, that, dependent on the polarization of a weak probe beam, the diffraction components of the SRG and BBG either interfere constructively or destructively in the DE, altering the appearance of the intensity distribution within the diffracted spot. The third (III) and fourth (IV) publications describe the light-induced reconfiguration of surface structures. Special attention is payed to conditions influencing the erasure of topography and bulk gratings. This can be achieved via thermal treatment or illumination of the polymer film. Using the translation of the interference pattern (IP) in a controlled way, the optical erase speed is significantly increased. Additionally, a dynamic reconfigurable surface is generated, which could move surface attached objects by the continuous translation of the interference pattern during irradiation of the polymer films. The fifth publication (V) deals with the understanding of polymer deformation under irradiation with SP-IP, which is the only IP generating a half-period topography grating (compared to the period of the IP) on the photo-sensitive polymer film. This mechanism is used, e.g. to generate a SRG below the diffraction limit of light. It also represents an easy way of changing the period of the surface grating just by a small change in polarization angle of the interfering beams without adjusting the optical pass of the two beams. Additionally, complex surface gratings formed in mixed polarization- and intensity interference patterns are shown. I J. Jelken, C. Henkel and S. Santer, Applied Physics B, 125 (2019), 218 II J. Jelken, C. Henkel and S. Santer, Appl. Phys. Lett., 116 (2020), 051601 III J. Jelken and S. Santer, RSC Advances, 9 (2019), 20295 IV J. Jelken, M. Brinkjans, C. Henkel and S. Santer, SPIE Proceedings, 11367 (2020), 1136710 V J. Jelken, C. Henkel and S. Santer, Formation of Half-Period Surface Relief Gratings in Azobenzene Containing Polymer Films (submitted to Applied Physics B)}, language = {en} }