@phdthesis{Scholz2006, author = {Scholz, Matthias}, title = {Approaches to analyse and interpret biological profile data}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7839}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {Advances in biotechnologies rapidly increase the number of molecules of a cell which can be observed simultaneously. This includes expression levels of thousands or ten-thousands of genes as well as concentration levels of metabolites or proteins. Such Profile data, observed at different times or at different experimental conditions (e.g., heat or dry stress), show how the biological experiment is reflected on the molecular level. This information is helpful to understand the molecular behaviour and to identify molecules or combination of molecules that characterise specific biological condition (e.g., disease). This work shows the potentials of component extraction algorithms to identify the major factors which influenced the observed data. This can be the expected experimental factors such as the time or temperature as well as unexpected factors such as technical artefacts or even unknown biological behaviour. Extracting components means to reduce the very high-dimensional data to a small set of new variables termed components. Each component is a combination of all original variables. The classical approach for that purpose is the principal component analysis (PCA). It is shown that, in contrast to PCA which maximises the variance only, modern approaches such as independent component analysis (ICA) are more suitable for analysing molecular data. The condition of independence between components of ICA fits more naturally our assumption of individual (independent) factors which influence the data. This higher potential of ICA is demonstrated by a crossing experiment of the model plant Arabidopsis thaliana (Thale Cress). The experimental factors could be well identified and, in addition, ICA could even detect a technical artefact. However, in continuously observations such as in time experiments, the data show, in general, a nonlinear distribution. To analyse such nonlinear data, a nonlinear extension of PCA is used. This nonlinear PCA (NLPCA) is based on a neural network algorithm. The algorithm is adapted to be applicable to incomplete molecular data sets. Thus, it provides also the ability to estimate the missing data. The potential of nonlinear PCA to identify nonlinear factors is demonstrated by a cold stress experiment of Arabidopsis thaliana. The results of component analysis can be used to build a molecular network model. Since it includes functional dependencies it is termed functional network. Applied to the cold stress data, it is shown that functional networks are appropriate to visualise biological processes and thereby reveals molecular dynamics.}, subject = {Bioinformatik}, language = {en} } @phdthesis{RoggeSolti2014, author = {Rogge-Solti, Andreas}, title = {Probabilistic Estimation of Unobserved Process Events}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-70426}, school = {Universit{\"a}t Potsdam}, year = {2014}, abstract = {Organizations try to gain competitive advantages, and to increase customer satisfaction. To ensure the quality and efficiency of their business processes, they perform business process management. An important part of process management that happens on the daily operational level is process controlling. A prerequisite of controlling is process monitoring, i.e., keeping track of the performed activities in running process instances. Only by process monitoring can business analysts detect delays and react to deviations from the expected or guaranteed performance of a process instance. To enable monitoring, process events need to be collected from the process environment. When a business process is orchestrated by a process execution engine, monitoring is available for all orchestrated process activities. Many business processes, however, do not lend themselves to automatic orchestration, e.g., because of required freedom of action. This situation is often encountered in hospitals, where most business processes are manually enacted. Hence, in practice it is often inefficient or infeasible to document and monitor every process activity. Additionally, manual process execution and documentation is prone to errors, e.g., documentation of activities can be forgotten. Thus, organizations face the challenge of process events that occur, but are not observed by the monitoring environment. These unobserved process events can serve as basis for operational process decisions, even without exact knowledge of when they happened or when they will happen. An exemplary decision is whether to invest more resources to manage timely completion of a case, anticipating that the process end event will occur too late. This thesis offers means to reason about unobserved process events in a probabilistic way. We address decisive questions of process managers (e.g., "when will the case be finished?", or "when did we perform the activity that we forgot to document?") in this thesis. As main contribution, we introduce an advanced probabilistic model to business process management that is based on a stochastic variant of Petri nets. We present a holistic approach to use the model effectively along the business process lifecycle. Therefore, we provide techniques to discover such models from historical observations, to predict the termination time of processes, and to ensure quality by missing data management. We propose mechanisms to optimize configuration for monitoring and prediction, i.e., to offer guidance in selecting important activities to monitor. An implementation is provided as a proof of concept. For evaluation, we compare the accuracy of the approach with that of state-of-the-art approaches using real process data of a hospital. Additionally, we show its more general applicability in other domains by applying the approach on process data from logistics and finance.}, language = {en} }