@phdthesis{Nguyen2019, author = {Nguyen, Manh Duy Linh}, title = {Reproduction, development and reproductive isolation barriers of the mormyrid fish (genus Campylomormyrus, Teleostei)}, doi = {10.25932/publishup-43719}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-437197}, school = {Universit{\"a}t Potsdam}, pages = {121}, year = {2019}, abstract = {Weakly electric mormyrid fish comprise about 200 species. 15 species of the genus Campylomormyrus have been described. These are very diverse concerning the trunk-like snout and the shape and duration of the electric organ discharge (EOD) and the anatomy of the electric organ. In this dissertation data on the reproduction in captivity of four species and on the ontogeny of the EOD and the EO of three species are presented. Reproduction of the four species C. compressirostris, C. rhynchophorus, C. tshokwe and C. numenius: Cyclical reproduction was provoked by changing only water conductivity (C): decreasing C led to gonadal recrudescence, an increase induced gonad regression. Data on the reproduction and development of three species are presented (in C. numenius gonad development could only be achieved in males). Agonistic behavior in the C. tshokwe pair forced us to divide the breeding tank; therefore, only ovipositions occurred. However, injection of an artificial GnRH hormone allowed us to obtain ripe eggs and sperm and to perform successful artificial reproduction. All three species (C. compressirostris, C. rhynchophorus, C. tshokwe) are indeterminate fractional spawners. Spawnings/ovipositions occurred during the second half of the night; no parental care was observed; no special spawning substrates were necessary. C. compressirostris successfully spawned in breeding groups, C. rhynchophorus as pair. Spawning intervals ranged from 6 to 66 days in C. rhynchophorus, 10-75 days in C. tshokwe, and 18 days in C. compressirostris (calculated values). Fecundities (eggs per fractional spawning) ranged from 70 to 1570 eggs in C. rhynchophorus, 100-1192 in C. tshokwe, and 38-246 in C. compressirostris. All three species produce yolky, slightly sticky eggs. Egg diameter ranges from 2.3-3.0 mm. Hatching occurred on day 3, feeding started on day 11. Transition from larval to juvenile stage occurred at around 20 mm total length (TL). At this size C. rhynchophorus developed a higher body than the two other species and differences between the species in the melanin pigmentation of the unpaired fins occurred. Between 32 and 35 mm TL the upper and lower jaws developed. C. compressirostris and C. tamandua are similar in morphology and both produce short EODs of ca. 150-200 μs duration. Both species reproduce easily in captivity. We tried to obtain natural hybrids in two breeding groups, 1) four males of C. compressirostris and three females of C. tamandua and 2) six females of C. compressirostris and four males of C. tamandua. In both combinations several times oviposition occurred, however, we never found fertilized eggs. In subsequent experiments, not described here, we obtained hybrids between these two species by means of artificial reproduction. Ontogeny of the EOD and the EO: The Campylomormyrus species are very diverse both concerning the shape and the duration of their EODs. There are species with very short EODs, e.g. C. compressirostris duration, a species with an EOD length of about 4-8 ms duration (C. tshokwe) and species with very long EODs of about 25 ms duration (e.g. C. rhynchophorus). Due to the successful breeding of the three species in captivity, we were able to investigate in detail the ontogeny of the EOD. Larvae of the three species C. compressirostris, C. tshokwe and C. rhynchophorus first produce a biphasic larval EOD typical for these small larvae. The first activity of the adult electric organ in the caudal peduncle is a biphasic juvenile EOD. Juvenile C. compressirostris and C. tshokwe start out with a short biphasic EOD of about 160 - 200 μs duration at sizes between 25 mm (C. compressirostris) and 37 mm (C. tshokwe). Adult C. compressirostris show an EOD identical to that of the juvenile. In C. tshokwe, the juvenile EOD changes continuously during development both concerning duration, amplitude increase and shape. 18 cm long C. tshokwe still do not yet produce an EOD typical for the adult fish. Juveniles of C. rhynchophorus produce at 33 mm total length a juvenile biphasic EOD, however, of longer duration (about 640 μs) than the two species mentioned above. This juvenile EOD changes continuously both in form, amplitude increase and duration with growth until the adult EOD waveform appears at about 15 cm body length. In juveniles about seven cm long the triphasic feature of the EOD starts to develop due to the appearance of a second head positive phase. Specific EOD stages are produced in relation to size and not to age. Individual differences in the EOD both concerning shape and duration are very small. The basic anatomy of the electrocytes is very similar in all three species: the main stalk which receives the innervation, is located at the caudal face of the electrocyte. Membrane penetrations of the stalks do not occur. However, there are differences in the fine structure of the electrocytes in the three species. Papillae, proliferations of the membrane, which increase the surface area of the electrocyte and are thought to incrase the EOD-duration, are only found in C. tshokwe and C. rhynchophorus. In these two species in addition, holes develop in the electrocytes during ontogeny. This might also have an impact on EOD duration.}, language = {en} } @phdthesis{Cheng2024, author = {Cheng, Feng}, title = {Evolution and ontogeny of electric organ discharge in African weakly electric fish genus Campylomormyrus: a genomic and transcriptomic perspective}, doi = {10.25932/publishup-63017}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-630172}, school = {Universit{\"a}t Potsdam}, pages = {176}, year = {2024}, abstract = {The African weakly electric fishes (Mormyridae) exhibit a remarkable adaptive radiation possibly due to their species-specific electric organ discharges (EODs). It is produced by a muscle-derived electric organ that is located in the caudal peduncle. Divergence in EODs acts as a pre-zygotic isolation mechanism to drive species radiations. However, the mechanism behind the EOD diversification are only partially understood. The aim of this study is to explore the genetic basis of EOD diversification from the gene expression level across Campylomormyrus species/hybrids and ontogeny. I firstly produced a high quality genome of the species C. compressirostris as a valuable resource to understand the electric fish evolution. The next study compared the gene expression pattern between electric organs and skeletal muscles in Campylomormyrus species/hybrids with different types of EOD duration. I identified several candidate genes with an electric organ-specific expression, e.g. KCNA7a, KLF5, KCNJ2, SCN4aa, NDRG3, MEF2. The overall genes expression pattern exhibited a significant association with EOD duration in all analyzed species/hybrids. The expression of several candidate genes, e.g. KCNJ2, KLF5, KCNK6 and KCNQ5, possibly contribute to the regulation of EOD duration in Campylomormyrus due to their increasing or decreasing expression. Several potassium channel genes showed differential expression during ontogeny in species and hybrid with EOD alteration, e.g. KCNJ2. I next explored allele specific expression of intragenus hybrids by crossing the duration EOD species C. compressirostris with the medium duration EOD species C. tshokwe and the elongated duration EOD species C. rhynchophorus. The hybrids exhibited global expression dominance of the C. compressirostris allele in the adult skeletal muscle and electric organ, as well as in the juvenile electric organ. Only the gene KCNJ2 showed dominant expression of the allele from C. rhynchophorus, and this was increasingly dominant during ontogeny. It hence supported our hypothesis that KCNJ2 is a key gene of regulating EOD duration. Our results help us to understand, from a genetic perspective, how gene expression effect the EOD diversification in the African weakly electric fish.}, language = {en} }