@article{LuoUtechtDokicetal.2011, author = {Luo, Ying and Utecht, Manuel Martin and Dokic, Jadranka and Korchak, Sergey and Vieth, Hans-Martin and Haag, Rainer and Saalfrank, Peter}, title = {Cis-trans isomerisation of substituted aromatic imines a comparative experimental and theoretical study}, series = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, volume = {12}, journal = {ChemPhysChem : a European journal of chemical physics and physical chemistry}, number = {12}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1439-4235}, doi = {10.1002/cphc.201100179}, pages = {2311 -- 2321}, year = {2011}, abstract = {The cis-trans isomerisation of N-benzylideneaniline (NBA) and derivatives containing a central C=N bond has been investigated experimentally and theoretically. Eight different NBA molecules in three different solvents were irradiated to enforce a photochemical trans (hv) -> cis isomerisation and the kinetics of the thermal backreaction cis (Delta)-> trans were determined by NMR spectroscopy measurements in the temperature range between 193 and 288 K. Theoretical calculations using density functional theory and Eyring transition-state theory were carried out for 12 different NBA species in the gas phase and three different solvents to compute thermal isomerisation rates of the thermal back reaction. While the computed absolute rates are too large, they reveal and explain experimental trends. Time-dependent density functional theory provides optical spectra for vertical transitions and excitation energy differences between trans and cis forms. Together with isomerisation rates, the latter can be used to identify "optimal switches" with good photochromicity and reasonable thermal stability.}, language = {en} } @article{IlnytskyiNeherSaphiannikova2011, author = {Ilnytskyi, Jaroslav M. and Neher, Dieter and Saphiannikova, Marina}, title = {Opposite photo-induced deformations in azobenzene-containing polymers with different molecular architecture molecular dynamics study}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {135}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {4}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.3614499}, pages = {12}, year = {2011}, abstract = {Photo-induced deformations in azobenzene-containing polymers (azo-polymers) are central to a number of applications, such as optical storage and fabrication of diffractive elements. The microscopic nature of the underlying opto-mechanical coupling is yet not clear. In this study, we address the experimental finding that the scenario of the effects depends on molecular architecture of the used azo-polymer. Typically, opposite deformations in respect to the direction of light polarization are observed for liquid crystalline and amorphous azo-polymers. In this study, we undertake molecular dynamics simulations of two different models that mimic these two types of azo-polymers. We employ hybrid force field modeling and consider only trans-isomers of azobenzene, represented as Gay-Berne sites. The effect of illumination on the orientation of the chromophores is considered on the level of orientational hole burning and emphasis is given to the resulting deformation of the polymer matrix. We reproduce deformations of opposite sign for the two models being considered here and discuss the relevant microscopic mechanisms in both cases.}, language = {en} }