@article{WorseckKhrykinHennawietal.2021, author = {Worseck, G{\´a}bor and Khrykin, Ilya Sergeevich and Hennawi, Joseph F. and Prochaska, J. Xavier and Farina, Emanuele Paolo}, title = {Dating individual quasars with the He II proximity effect}, series = {Monthly notices of the Royal Astronomical Society}, volume = {505}, journal = {Monthly notices of the Royal Astronomical Society}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stab1685}, pages = {5084 -- 5103}, year = {2021}, abstract = {Constraints on the time-scales of quasar activity are key to understanding the formation and growth of supermassive black holes (SMBHs), quasar triggering mechanisms, and possible feedback effects on their host galaxies. However, observational estimates of this so-called quasar lifetime are highly uncertain (t(Q) similar to 10(4)-10(9) yr), because most methods are indirect and involve many model-dependent assumptions. Direct evidence of earlier activity is gained from the higher ionization state of the intergalactic medium (IGM) in the quasar environs, observable as enhanced Ly alpha transmission in the so-called proximity zone. Due to the similar to 30 Myr equilibration time-scale of He II in the z similar to 3 IGM, the size of the He II proximity zone depends on the time the quasar had been active before our observation t(on) <= t(Q), enabling up to +/- 0.2 dex precise measurements of individual quasar on-times that are comparable to the e-folding time-scale t(S) <= 44 Myr of SMBH growth. Here we present the first statistical sample of 13 quasars whose accurate and precise systemic redshifts allow for measurements of sufficiently precise He II quasar proximity zone sizes between similar or equal to 2 and similar or equal to 15 proper Mpc from science-grade Hubble Space Telescope (HST) spectra. Comparing these sizes to predictions from cosmological hydrodynamical simulations post-processed with 1D radiative transfer, we infer a broad range of quasar on-times from t(on) less than or similar to 1Myr to t(on) > 30 Myr that does not depend on quasar luminosity, black hole mass, or Eddington ratio. These results point to episodic quasar activity over a long duty cycle, but do not rule out substantial SMBH growth during phases of radiative inefficiency or obscuration.}, language = {en} } @phdthesis{Worseck2007, author = {Worseck, G{\´a}bor}, title = {The transverse proximity effect in quasar spectra}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-18738}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {The intergalactic medium is kept highly photoionised by the intergalactic UV background radiation field generated by the overall population of quasars and galaxies. In the vicinity of sources of UV photons, such as luminous high-redshift quasars, the UV radiation field is enhanced due to the local source contribution. The higher degree of ionisation is visible as a reduced line density or generally as a decreased level of absorption in the Lyman alpha forest of neutral hydrogen. This so-called proximity effect has been detected with high statistical significance towards luminous quasars. If quasars radiate rather isotropically, background quasar sightlines located near foreground quasars should show a region of decreased Lyman alpha absorption close to the foreground quasar. Despite considerable effort, such a transverse proximity effect has only been detected in a few cases. So far, studies of the transverse proximity effect were mostly limited by the small number of suitable projected pairs or groups of high-redshift quasars. With the aim to substantially increase the number of quasar groups in the vicinity of bright quasars we conduct a targeted survey for faint quasars around 18 well-studied quasars at employing slitless spectroscopy. Among the reduced and calibrated slitless spectra of 29000 objects on a total area of 4.39 square degrees we discover in total 169 previously unknown quasar candidates based on their prominent emission lines. 81 potential z>1.7 quasars are selected for confirmation by slit spectroscopy at the Very Large Telescope (VLT). We are able to confirm 80 of these. 64 of the newly discovered quasars reside at z>1.7. The high success rate of the follow-up observations implies that the majority of the remaining candidates are quasars as well. In 16 of these groups we search for a transverse proximity effect as a systematic underdensity in the HI Lyman alpha absorption. We employ a novel technique to characterise the random absorption fluctuations in the forest in order to estimate the significance of the transverse proximity effect. Neither low-resolution spectra nor high-resolution spectra of background quasars of our groups present evidence for a transverse proximity effect. However, via Monte Carlo simulations the effect should be detectable only at the 1-2sigma level near three of the foreground quasars. Thus, we cannot distinguish between the presence or absence of a weak signature of the transverse proximity effect. The systematic effects of quasar variability, quasar anisotopy and intrinsic overdensities near quasars likely explain the apparent lack of the transverse proximity effect. Even in absence of the systematic effects, we show that a statistically significant detection of the transverse proximity effect requires at least 5 medium-resolution quasar spectra of background quasars near foreground quasars whose UV flux exceeds the UV background by a factor 3. Therefore, statistical studies of the transverse proximity effect require large numbers of suitable pairs. Two sightlines towards the central quasars of our survey fields show intergalactic HeII Lyman alpha absorption. A comparison of the HeII absorption to the corresponding HI absorption yields an estimate of the spectral shape of the intergalactic UV radiation field, typically parameterised by the HeII/HI column density ratio eta. We analyse the fluctuating UV spectral shape on both lines of sight and correlate it with seven foreground quasars. On the line of sight towards Q0302-003 we find a harder radiation field near 4 foreground quasars. In the direct vicinity of the quasars eta is consistent with values of 25-100, whereas at large distances from the quasars eta>200 is required. The second line of sight towards HE2347-4342 probes lower redshifts where eta is directly measurable in the resolved HeII forest. Again we find that the radiation field near the 3 foreground quasars is significantly harder than in general. While eta still shows large fluctuations near the quasars, probably due to radiative transfer, the radiation field is on average harder near the quasars than far away from them. We interpret these discoveries as the first detections of the transverse proximity effect as a local hardness fluctuation in the UV spectral shape. No significant HI proximity effect is predicted for the 7 foreground quasars. In fact, the HI absorption near the quasars is close to or slightly above the average, suggesting that the weak signature of the transverse proximity effect is masked by intrinsic overdensities. However, we show that the UV spectral shape traces the transverse proximity effect even in overdense regions or at large distances. Therefore, the spectral hardness is a sensitive physical measure of the transverse proximity effect that is able to break the density degeneracy affecting the traditional searches.}, language = {en} } @article{WorseckProchaskaMcQuinnetal.2011, author = {Worseck, Gabor and Prochaska, J. Xavier and McQuinn, Matthew and Dall'Aglio, Aldo and Fechner, Cora and Hennawi, Joseph F. and Reimers, Dieter and Richter, Philipp and Wisotzki, Lutz}, title = {The end of Helium Reionization at z similar or equal to 2.7 Inferred from cosmic variance in HST/COS He II Ly alpha Absorption spectra}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {733}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2041-8205}, doi = {10.1088/2041-8205/733/2/L24}, pages = {6}, year = {2011}, abstract = {We report on the detection of strongly varying intergalactic He II absorption in HST/COS spectra of two z(em) similar or equal to 3 quasars. From our homogeneous analysis of the He II absorption in these and three archival sightlines, we find a marked increase in the mean He II effective optical depth from similar or equal to 1 at z similar or equal to 2.3 to greater than or similar to 5 at z similar or equal to 3.2, but with a large scatter of 2 less than or similar to tau(eff, He II) less than or similar to 5 at 2.7 < z < 3 on scales of similar to 10 proper Mpc. This scatter is primarily due to fluctuations in the He II fraction and the He II-ionizing background, rather than density variations that are probed by the coeval Hi forest. Semianalytic models of He II absorption require a strong decrease in the He II-ionizing background to explain the strong increase of the absorption at z greater than or similar to 2.7, probably indicating He II reionization was incomplete at z(reion) greater than or similar to 2.7. Likewise, recent three-dimensional numerical simulations of He II reionization qualitatively agree with the observed trend only if He II reionization completes at z(reion) similar or equal to 2.7 or even below, as suggested by a large tau(eff, He II) greater than or similar to 3 in two of our five sightlines at z < 2.8. By doubling the sample size at 2.7 less than or similar to z less than or similar to 3, our newly discovered He II sightlines for the first time probe the diversity of the second epoch of reionization when helium became fully ionized.}, language = {en} } @article{WorseckDaviesHennawietal.2019, author = {Worseck, Gabor and Davies, Frederick B. and Hennawi, Joseph F. and Prochaska, J. Xavier}, title = {The Evolution of the He II-ionizing Background at Redshifts 2.3 < z < 3.8 Inferred from a Statistical Sample of 24 HST/COS He II Lyα Absorption Spectra}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {875}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/ab0fa1}, pages = {25}, year = {2019}, abstract = {We present measurements of the large-scale (≈40 comoving Mpc) effective optical depth of He ii Lyα absorption, \${\tau }_{\mathrm{eff}}\$, at 2.54 < z < 3.86 toward 16 He ii-transparent quasars observed with the Cosmic Origins Spectrograph on the Hubble Space Telescope, to characterize the ionization state of helium in the intergalactic medium (IGM). We provide the first statistical sample of \${\tau }_{\mathrm{eff}}\$ measurements in six signal-to-noise ratio gsim3 He ii sightlines at z > 3.5, and study the redshift evolution and sightline-to-sightline variance of \${\tau }_{\mathrm{eff}}\$ in 24 He ii sightlines. We confirm an increase of the median \${\tau }_{\mathrm{eff}}\$ from sime2 at z = 2.7 to \${\tau }_{\mathrm{eff}}\gtrsim 5\$ at z > 3, and a scatter in \${\tau }_{\mathrm{eff}}\$ that increases with redshift. The z > 3.5 He ii absorption is predominantly saturated, but isolated narrow (Δv < 650 km s-1) transmission spikes indicate patches of reionized helium. We compare our measurements to predictions for a range of UV background models applied to outputs of a large-volume (146 comoving Mpc)3 hydrodynamical simulation by forward-modeling our sample's quality and size. At z > 2.74, the variance in \${\tau }_{\mathrm{eff}}\$ significantly exceeds expectations for a spatially uniform UV background, but is consistent with a fluctuating radiation field sourced by variations in the quasar number density and the mean free path in the post-reionization IGM. We develop a method to infer the approximate median He ii photoionization rate \${{\rm{\Gamma }}}_{\mathrm{He}{\rm{II}}}\$ of a fluctuating UV background from the median \${\tau }_{\mathrm{eff}}\$, finding a factor sime5 decrease in \${{\rm{\Gamma }}}_{\mathrm{He}{\rm{II}}}\$ between z sime 2.6 and z sime 3.1. At z sime 3.1, \${{\rm{\Gamma }}}_{\mathrm{He}{\rm{II}}}=\left[{9.1}_{-1.2}^{+1.1}\,(\mathrm{stat}.){\,}_{-3.4}^{+2.4}\,(\mathrm{sys}.)\right]\times {10}^{-16}\$ s-1 corresponds to a median He ii fraction of sime2.5\%, indicating that our data probe the tail end of He ii reionization.}, language = {en} } @article{WisotzkiBaconBlaizotetal.2016, author = {Wisotzki, Lutz and Bacon, Roland and Blaizot, J. and Brinchmann, Jarle and Herenz, Edmund Christian and Schaye, Joop and Bouche, Nicolas and Cantalupo, Sebastiano and Contini, Thierry and Carollo, C. M. and Caruana, Joseph and Courbot, J. -B. and Emsellem, E. and Kamann, S. and Kerutt, Josephine Victoria and Leclercq, F. and Lilly, S. J. and Patricio, V. and Sandin, C. and Steinmetz, Matthias and Straka, Lorrie A. and Urrutia, Tanya and Verhamme, A. and Weilbacher, Peter Michael and Wendt, Martin}, title = {Extended Lyman alpha haloes around individual high-redshift galaxies revealed by MUSE}, series = {Science}, volume = {587}, journal = {Science}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201527384}, pages = {27}, year = {2016}, abstract = {We report the detection of extended Ly alpha emission around individual star-forming galaxies at redshifts z = 3-6 in an ultradeep exposure of the Hubble Deep Field South obtained with MUSE on the ESO-VLT. The data reach a limiting surface brightness (1 sigma) of similar to 1 x 10(-19) erg s(-1) cm(-2) arcsec(-2) in azimuthally averaged radial profiles, an order of magnitude improvement over previous narrowband imaging. Our sample consists of 26 spectroscopically confirmed Ly alpha-emitting, but mostly continuum-faint (m(AB) greater than or similar to 27) galaxies. In most objects the Ly alpha emission is considerably more extended than the UV continuum light. While five of the faintest galaxies in the sample show no significantly detected Ly alpha haloes, the derived upper limits suggest that this is due to insufficient S/N. Ly alpha haloes therefore appear to be ubiquitous even for low-mass (similar to 10(8)-10(9) M-circle dot) star-forming galaxies at z > 3. We decompose the Ly alpha emission of each object into a compact component tracing the UV continuum and an extended halo component, and infer sizes and luminosities of the haloes. The extended Ly alpha emission approximately follows an exponential surface brightness distribution with a scale length of a few kpc. While these haloes are thus quite modest in terms of their absolute sizes, they are larger by a factor of 5-15 than the corresponding rest-frame UV continuum sources as seen by HST. They are also much more extended, by a factor similar to 5, than Ly alpha haloes around low-redshift star-forming galaxies. Between similar to 40\% and greater than or similar to 90\% of the observed Ly alpha flux comes from the extended halo component, with no obvious correlation of this fraction with either the absolute or the relative size of the Ly alpha halo. Our observations provide direct insights into the spatial distribution of at least partly neutral gas residing in the circumgalactic medium of low to intermediate mass galaxies at z > 3.}, language = {en} } @article{WendtBoucheZabletal.2021, author = {Wendt, Martin and Bouche, Nicolas F. and Zabl, Johannes and Schroetter, Ilane and Muzahid, Sowgat}, title = {MusE GAs FLOw and Wind V. The dust/metallicity-anisotropy of the circum-galactic medium}, series = {Monthly notices of the Royal Astronomical Society}, volume = {502}, journal = {Monthly notices of the Royal Astronomical Society}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stab049}, pages = {3733 -- 3745}, year = {2021}, abstract = {We investigate whether the dust content of the circum-galactic medium (CGM) depends on the location of the quasar sightline with respect to the galaxy major-axis using 13 galaxy-Mg II absorber pairs (9-81 kpc distance) from the MusE GAs FLOw and Wind (MEGAFLOW) survey at 0.4 < z < 1.4. The dust content of the CGM is obtained from [Zn/Fe] using ultraviolet and visual echelle spectrograph data. When a direct measurement of [Zn/Fe] is unavailable, we estimate the dust depletion from a method that consists in solving for the depletion from multiple singly ionized ions (e.g. Mn II, Cr II, and Zn II) since each ion depletes on dust grains at different rates. We find a positive correlation between the azimuthal angle and [Zn/Fe] with a Pearson's gamma = 0.70 +/- 0.14. The sightlines along the major axis show [Zn/Fe] < 0.5, whereas the [Zn/Fe] is > 0.8 along the minor axis. These results suggest that the CGM along the minor axis is on average more metal enriched (by approximate to 1 dex) than the gas located along the major axis of galaxies provided that dust depletion is a proxy for metallicity. This anisotropic distribution is consistent with recent results on outflow and accretion in hydro-dynamical simulations.}, language = {en} } @article{TurnerSchayeCrainetal.2016, author = {Turner, Monica L. and Schaye, Joop and Crain, Robert A. and Theuns, Tom and Wendt, Martin}, title = {Observations of metals in the z approximate to 3.5 intergalactic medium and comparison to the EAGLE simulations}, series = {Monthly notices of the Royal Astronomical Society}, volume = {462}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stw1816}, pages = {2440 -- 2464}, year = {2016}, abstract = {We study the z approximate to 3.5 intergalactic medium (IGM) by comparing new, high-quality absorption spectra of eight QSOs with < z(QSO)> = 3.75, to virtual observations of the Evolution and Assembly of Galaxies and their Environments (EAGLE) cosmological hydrodynamical simulations. We employ the pixel optical depth method and uncover strong correlations between various combinations of H I, C III, C IV, Si III, Si IV, and O VI. We find good agreement between many of the simulated and observed correlations, including tau(O) (VI) (tau(H) (I)). However, the observed median optical depths for the tau(C) (IV) (tau(H) (I)) and tau(Si) (IV) (tau(H) (I)) relations are higher than those measured from the mock spectra. The discrepancy increases from up to approximate to 0.1 dex at tau(H) (I) = 1 to approximate to 1 dex at tau(H) (I) = 10(2), where we are likely probing dense regions at small galactocentric distances. As possible solutions, we invoke (a) models of ionizing radiation softened above 4 Ryd to account for delayed completion of He II reionization; (b) simulations run at higher resolution; (c) the inclusion of additional line broadening due to unresolved turbulence; and (d) increased elemental abundances; however, none of these factors can fully explain the observed differences. Enhanced photoionization of H I by local sources, which was not modelled, could offer a solution. However, the much better agreement with the observed O VI(H I) relation, which we find probes a hot and likely collisionally ionized gas phase, indicates that the simulations are not in tension with the hot phase of the IGM, and suggests that the simulated outflows may entrain insufficient cool gas.}, language = {en} } @article{TepperGarciaRichterSchayeetal.2011, author = {Tepper-Garcia, Thorsten and Richter, Philipp and Schaye, Joop and Booth, C. M. and Vecchia, Claudio Dalla and Theuns, Tom and Wiersma, Robert P. C.}, title = {Absorption signatures of warm-hot gas at low redshift o vi}, series = {Monthly notices of the Royal Astronomical Society}, volume = {413}, journal = {Monthly notices of the Royal Astronomical Society}, number = {1}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0035-8711}, doi = {10.1111/j.1365-2966.2010.18123.x}, pages = {190 -- 212}, year = {2011}, abstract = {We investigate the origin and physical properties of O vi absorbers at low redshift (z = 0.25) using a subset of cosmological, hydrodynamical simulations from the OverWhelmingly Large Simulations (OWLS) project. Intervening O vi absorbers are believed to trace shock-heated gas in the warm-hot intergalactic medium (WHIM) and may thus play a key role in the search for the missing baryons in the present-day Universe. When compared to observations, the predicted distributions of the different O vi line parameters (column density, Doppler parameter, rest equivalent width W-r) from our simulations exhibit a lack of strong O vi absorbers, a discrepancy that has also been found by Oppenheimer \& Dave. This suggests that physical processes on subgrid scales (e.g. turbulence) may strongly influence the observed properties of O vi systems. We find that the intervening O vi absorption arises mainly in highly metal enriched (10-1 < Z/Z(circle dot) less than or similar to 1) gas at typical overdensities of 1 < /<<>> less than or similar to 102. One-third of the O vi absorbers in our simulation are found to trace gas at temperatures T < 105 K, while the rest arises in gas at higher temperatures, most of them around T = 105.3 +/- 0.5 K. These temperatures are much higher than inferred by Oppenheimer \& Dave, probably because that work did not take the suppression of metal-line cooling by the photoionizing background radiation into account. While the O vi resides in a similar region of (, T)-space as much of the shock-heated baryonic matter, the vast majority of this gas has a lower metal content and does not give rise to detectable O vi absorption. As a consequence of the patchy metal distribution, O vi absorbers in our simulations trace only a very small fraction of the cosmic baryons (< 2 per cent) and the cosmic metals. Instead, these systems presumably trace previously shock-heated, metal-rich material from galactic winds that is now mixing with the ambient gas and cooling. The common approach of comparing O vi and H i column densities to estimate the physical conditions in intervening absorbers from QSO observations may be misleading, as most of the H i (and most of the gas mass) is not physically connected with the high-metallicity patches that give rise to the O vi absorption.}, language = {en} } @article{TepperGarciaRichterSchayeetal.2012, author = {Tepper-Garcia, Thorsten and Richter, Philipp and Schaye, Joop and Booth, C. M. and Dalla Vecchia, Claudio and Theuns, Tom}, title = {Absorption signatures of warm-hot gas at low redshift: broad H?i Lya absorbers}, series = {Monthly notices of the Royal Astronomical Society}, volume = {425}, journal = {Monthly notices of the Royal Astronomical Society}, number = {3}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0035-8711}, doi = {10.1111/j.1365-2966.2012.21545.x}, pages = {1640 -- 1663}, year = {2012}, abstract = {We investigate the physical state of H?i absorbing gas at low redshift (z = 0.25) using a subset of cosmological, hydrodynamic simulations from the OverWhelmingly Large Simulations project, focusing in particular on broad (bHI=40 km s-1) H?i Lya absorbers (BLAs), which are believed to originate in shock-heated gas in the warm-hot intergalactic medium (WHIM). Our fiducial model, which includes radiative cooling by heavy elements and feedback by supernovae and active galactic nuclei, predicts that by z = 0.25 nearly 60?per cent of the gas mass ends up at densities and temperatures characteristic of the WHIM and we find that half of this fraction is due to outflows. The standard H?i observables (distribution of H?i column densities NH?I, distribution of Doppler parameters bHI, bHINH?I correlation) and the BLA line number density predicted by our simulations are in remarkably good agreement with observations. BLAs arise in gas that is hotter, more highly ionized and more enriched than the gas giving rise to typical Lya forest absorbers. The majority of the BLAs arise in warm-hot [log?(T/?K) similar to 5] gas at low (log?? < 1.5) overdensities. On average, thermal broadening accounts for at least 60?per cent of the BLA linewidth, which in turn can be used as a rough indicator of the thermal state of the gas. Detectable BLAs account for only a small fraction of the true baryon content of the WHIM at low redshift. In order to detect the bulk of the mass in this gas phase, a sensitivity at least one order of magnitude better than achieved by current ultraviolet spectrographs is required. We argue that BLAs mostly trace gas that has been shock heated and enriched by outflows and that they therefore provide an important window on a poorly understood feedback process.}, language = {en} } @article{TepperGarciaRichterSchaye2013, author = {Tepper-Garcia, Thor and Richter, Philipp and Schaye, Joop}, title = {Absorption signatures of warm-hot gas at low redshift - ne viii}, series = {Monthly notices of the Royal Astronomical Society}, volume = {436}, journal = {Monthly notices of the Royal Astronomical Society}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stt1712}, pages = {2063 -- 2081}, year = {2013}, abstract = {At z < 1 a large fraction of the baryons is thought to reside in diffuse gas that has been shock-heated to high temperatures (10 (5)-10 (6) K). Absorption by the 770.41, 780.32 A doublet of Ne viii in quasar spectra represents a unique tool to study this elusive warm-hot phase. We have developed an analytic model for the properties of Ne viii absorbers that allows for an inhomogeneous metal distribution. Our model agrees with the predictions of a simulation from the OverWhelmingly Large Simulations project indicating that the average line-of-sight metal-filling fraction within the absorbing gas is low (c(L) similar to 0.1). Most of the Ne viii in our model is produced in low-density, collisionally ionized gas (n(H) = 10(-6)-10(-4) cm(-3), T = 10 (5)-10 (6) K). Strong Ne viii absorbers (log(10)(N-NeVIII/cm(-2))14), like those recently detected by Hubble Space Telescope/Cosmic Origins Spectrograph, are found to arise in higher density gas (n(H) greater than or similar to 10(-4) cm(-3), T approximate to 5 x 10 (5) K). Ne viii cloudlets harbour only 1 per cent of the cosmic baryon budget. The baryon content of the surrounding gas (which has similar densities and temperatures as the Ne viii cloudlets) is a factor c(-1)L higher. We conclude that Ne viii absorbers are robust probes of shock-heated diffuse gas, but that spectra with signal-to-noise ratios S/N > 100 would be required to detect the bulk of the baryons in warm-hot gas.}, language = {en} }