@phdthesis{Schick2013, author = {Schick, Daniel}, title = {Ultrafast lattice dynamics in photoexcited nanostructures : femtosecond X-ray diffraction with optimized evaluation schemes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-68827}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Within the course of this thesis, I have investigated the complex interplay between electron and lattice dynamics in nanostructures of perovskite oxides. Femtosecond hard X-ray pulses were utilized to probe the evolution of atomic rearrangement directly, which is driven by ultrafast optical excitation of electrons. The physics of complex materials with a large number of degrees of freedom can be interpreted once the exact fingerprint of ultrafast lattice dynamics in time-resolved X-ray diffraction experiments for a simple model system is well known. The motion of atoms in a crystal can be probed directly and in real-time by femtosecond pulses of hard X-ray radiation in a pump-probe scheme. In order to provide such ultrashort X-ray pulses, I have built up a laser-driven plasma X-ray source. The setup was extended by a stable goniometer, a two-dimensional X-ray detector and a cryogen-free cryostat. The data acquisition routines of the diffractometer for these ultrafast X-ray diffraction experiments were further improved in terms of signal-to-noise ratio and angular resolution. The implementation of a high-speed reciprocal-space mapping technique allowed for a two-dimensional structural analysis with femtosecond temporal resolution. I have studied the ultrafast lattice dynamics, namely the excitation and propagation of coherent phonons, in photoexcited thin films and superlattice structures of the metallic perovskite SrRuO3. Due to the quasi-instantaneous coupling of the lattice to the optically excited electrons in this material a spatially and temporally well-defined thermal stress profile is generated in SrRuO3. This enables understanding the effect of the resulting coherent lattice dynamics in time-resolved X-ray diffraction data in great detail, e.g. the appearance of a transient Bragg peak splitting in both thin films and superlattice structures of SrRuO3. In addition, a comprehensive simulation toolbox to calculate the ultrafast lattice dynamics and the resulting X-ray diffraction response in photoexcited one-dimensional crystalline structures was developed in this thesis work. With the powerful experimental and theoretical framework at hand, I have studied the excitation and propagation of coherent phonons in more complex material systems. In particular, I have revealed strongly localized charge carriers after above-bandgap femtosecond photoexcitation of the prototypical multiferroic BiFeO3, which are the origin of a quasi-instantaneous and spatially inhomogeneous stress that drives coherent phonons in a thin film of the multiferroic. In a structurally imperfect thin film of the ferroelectric Pb(Zr0.2Ti0.8)O3, the ultrafast reciprocal-space mapping technique was applied to follow a purely strain-induced change of mosaicity on a picosecond time scale. These results point to a strong coupling of in- and out-of-plane atomic motion exclusively mediated by structural defects.}, language = {en} } @phdthesis{Kaergell2020, author = {K{\"a}rgell, Martin}, title = {Layer formation from perovskite nanoparticles with tunable optical and electronic properties}, doi = {10.25932/publishup-47566}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-475667}, school = {Universit{\"a}t Potsdam}, pages = {ix, 233}, year = {2020}, abstract = {Hybrid organic-inorganic perovskites have attracted attention in recent years, caused by the incomparable increase in efficiency in energy convergence, which implies the application as an absorber material for solar cells. A disadvantage of these materials is, among others, the instability to moisture and UV-radiation. One possible solution for these problems is the reduction of the size towards the nano world. With that nanosized perovskites are showing superior stability in comparison to e.g. perovskite layers. Additionally to this the nanosize even enables stable perovskite structures, which could not be achieved otherwise at room temperature. This thesis is separated into two major parts. The separation is done by the composition and the band gap of the material and at the same time the shape and size of the nanoparticles. Here the division is made by the methylammonium lead tribromide nanoplatelets and the caesium lead triiodide nanocubes. The first part is focusing on the hybrid organic-inorganic perovskite (methylammonium lead tribromide) nanoplatelets with a band gap of 2.35 eV and their thermal behaviour. Due to the challenging character of this material, several analysis methods are used to investigate the sub nano and nanostructures under the influence of temperature. As a result, a shift of phase-transition temperatures towards higher temperatures is observed. This unusual behaviour can be explained by the ligand, which is incorporated in the perovskite outer structure and adds phase-stability into the system. The second part of this thesis is focusing on the inorganic caesium lead triiodide nanocubes with a band gap of 1.83 eV. These nanocrystals are first investigated and compared by TEM, XRD and other optical methods. Within these methods, a cuboid and orthorhombic structure are revealed instead of the in literature described cubic shape and structure. Furthermore, these cuboids are investigated towards their self-assembly on a substrate. Here a high degree in self-assembly is shown. As a next step, the ligands of the nanocuboids are exchanged against other ligands to increase the charge carrier mobility. This is further investigated by the above-mentioned methods. The last section is dealing with the enhancement of the CsPbI3 structure, by incorporating potassium in the crystal structure. The results are suggesting here an increase in stability.}, language = {en} } @phdthesis{Kegelmann2019, author = {Kegelmann, Lukas}, title = {Advancing charge selective contacts for efficient monolithic perovskite-silicon tandem solar cells}, doi = {10.25932/publishup-42642}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-426428}, school = {Universit{\"a}t Potsdam}, pages = {v, 155}, year = {2019}, abstract = {Hybrid organic-inorganic perovskites are one of the most promising material classes for photovoltaic energy conversion. In solar cells, the perovskite absorber is sandwiched between n- and p-type contact layers which selectively transport electrons and holes to the cell's cathode and anode, respectively. This thesis aims to advance contact layers in perovskite solar cells and unravel the impact of interface and contact properties on the device performance. Further, the contact materials are applied in monolithic perovskite-silicon heterojunction (SHJ) tandem solar cells, which can overcome the single junction efficiency limits and attract increasing attention. Therefore, all contact layers must be highly transparent to foster light harvesting in the tandem solar cell design. Besides, the SHJ device restricts processing temperatures for the selective contacts to below 200°C. A comparative study of various electron selective contact materials, all processed below 180°C, in n-i-p type perovskite solar cells highlights that selective contacts and their interfaces to the absorber govern the overall device performance. Combining fullerenes and metal-oxides in a TiO2/PC60BM (phenyl-C60-butyric acid methyl ester) double-layer contact allows to merge good charge extraction with minimized interface recombination. The layer sequence thereby achieved high stabilized solar cell performances up to 18.0\% and negligible current-voltage hysteresis, an otherwise pronounced phenomenon in this device design. Double-layer structures are therefore emphasized as a general concept to establish efficient and highly selective contacts. Based on this success, the concept to combine desired properties of different materials is transferred to the p-type contact. Here, a mixture of the small molecule Spiro-OMeTAD [2,2',7,7'-tetrakis(N,N-di-p-methoxyphenylamine)-9,9'-spirobifluoren] and the doped polymer PEDOT [poly(3,4-ethylenedioxythiophene)] is presented as a novel hole selective contact. PEDOT thereby remarkably suppresses charge recombination at the perovskite surface, allowing an increase of quasi-Fermi level splitting in the absorber. Further, the addition of Spiro-OMeTAD into the PEDOT layer is shown to enhance charge extraction at the interface and allow high efficiencies up to 16.8\%. Finally, the knowledge on contact properties is applied to monolithic perovskite-SHJ tandem solar cells. The main goal is to optimize the top contact stack of doped Spiro-OMeTAD/molybdenum oxide(MoOx)/ITO towards higher transparency by two different routes. First, fine-tuning of the ITO deposition to mitigate chemical reduction of MoOx and increase the transmittance of MoOx/ITO stacks by 25\%. Second, replacing Spiro-OMeTAD with the alternative hole transport materials PEDOT/Spiro-OMeTAD mixtures, CuSCN or PTAA [poly(triaryl amine)]. Experimental results determine layer thickness constrains and validate optical simulations, which subsequently allow to realistically estimate the respective tandem device performances. As a result, PTAA represents the most promising replacement for Spiro-OMeTAD, with a projected increase of the optimum tandem device efficiency for the herein used architecture by 2.9\% relative to 26.5\% absolute. The results also reveal general guidelines for further performance gains of the technology.}, language = {en} } @phdthesis{Caprioglio2020, author = {Caprioglio, Pietro}, title = {Non-radiative recombination losses in perovskite solar cells}, doi = {10.25932/publishup-47763}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-477630}, school = {Universit{\"a}t Potsdam}, pages = {vi, 242}, year = {2020}, abstract = {In the last decade the photovoltaic research has been preponderantly overturned by the arrival of metal halide perovskites. The introduction of this class of materials in the academic research for renewable energy literally shifted the focus of a large number of research groups and institutions. The attractiveness of halide perovskites lays particularly on their skyrocketing efficiencies and relatively simple and cheap fabrication methods. Specifically, the latter allowed for a quick development of this research in many universities and institutes around the world at the same time. The outcome has been a fast and beneficial increase in knowledge with a consequent terrific improvement of this new technology. On the other side, the enormous amount of research promoted an immense outgrowth of scientific literature, perpetually published. Halide perovskite solar cells are now effectively competing with other established photovoltaic technologies in terms of power conversion efficiencies and production costs. Despite the tremendous improvement, a thorough understanding of the energy losses in these systems is of imperative importance to unlock the full thermodynamic potential of this material. This thesis focuses on the understanding of the non-radiative recombination processes in the neat perovskite and in complete devices. Specifically, photoluminescence quantum yield (PLQY) measurements were applied to multilayer stacks and cells under different illumination conditions to accurately determine the quasi-Fermi levels splitting (QFLS) in the absorber, and compare it with the external open-circuit voltage of the device (V_OC). Combined with drift-diffusion simulations, this approach allowed us to pinpoint the sites of predominant recombination, but also to investigate the dynamics of the underlying processes. As such, the internal and external ideality factors, associated to the QFLS and V_OC respectively, are studied with the aim of understanding the type of recombination processes taking place in the multilayered architecture of the device. Our findings highlight the failure of the equality between QFLS and V_OC in the case of strong interface recombination, as well as the detrimental effect of all commonly used transport layers in terms of V_OC losses. In these regards, we show how, in most perovskite solar cells, different recombination processes can affect the internal QFLS and the external V_OC and that interface recombination dictates the V_OC losses. This line of arguments allowed to rationalize that, in our devices, the external ideality factor is completely dominated by interface recombination, and that this process can alone be responsible for values of the ideality factor between 1 and 2, typically observed in perovskite solar cells. Importantly, our studies demonstrated how strong interface recombination can lower the ideality factor towards values of 1, often misinterpreted as pure radiative second order recombination. As such, a comprehensive understanding of the recombination loss mechanisms currently limiting the device performance was achieved. In order to reach the full thermodynamic potential of the perovskite absorber, the interfaces of both the electron and hole transport layers (ETL/HTL) must be properly addressed and improved. From here, the second part of the research work is devoted on reducing the interfacial non-radiative energy losses by optimizing the structure and energetics of the relevant interface in our solar cell devices, with the aim of bringing their quasi-Fermi level splitting closer to its radiative limit. As such, the interfaces have been carefully addressed and optimized with different methodologies. First, a small amount of Sr is added into the perovskite precursor solution with the effect of effectively reducing surface and interface recombination. In this case, devices with V_OC up to 1.23 V were achieved and the energy losses were minimized to as low as 100 meV from the radiative limit of the material. Through a combination of different methods, we showed that these improvements are related to a strong n-type surface doping, which repels the holes in the perovskite from the surface and the interface with the ETL. Second, a more general device improvement was achieved by depositing a defect-passivating poly(ionic-liquid) layer on top of the perovskite absorber. The resulting devices featured a concomitant improvement of the V_OC and fill factor, up to 1.17 V and 83\% respectively, reaching efficiency as high as 21.4\%. Moreover, the protecting polymer layer helped to enhance the stability of the devices under prolonged maximum power point tracking measurements. Lastly, PLQY measurements are used to investigate the recombination mechanisms in halide-segregated large bandgap perovskite materials. Here, our findings showed how few iodide-rich low-energy domains act as highly efficient radiative recombination centers, capable of generating PLQY values up to 25\%. Coupling these results with a detailed microscopic cathodoluminescence analysis and absorption profiles allowed to demonstrate how the emission from these low energy domains is due to the trapping of the carriers photogenerated in the Br-rich high-energy domains. Thereby, the strong implications of this phenomenon are discussed in relation to the failure of the optical reciprocity between absorption and emission and on the consequent applicability of the Shockley-Queisser theory for studying the energy losses such systems. In conclusion, the identification and quantification of the non-radiative QFLS and V_OC losses provided a base knowledge of the fundamental limitation of perovskite solar cells and served as guidance for future optimization and development of this technology. Furthermore, by providing practical examples of solar cell improvements, we corroborated the correctness of our fundamental understanding and proposed new methodologies to be further explored by new generations of scientists.}, language = {en} }