@phdthesis{TorresAcosta2015, author = {Torres Acosta, Ver{\´o}nica}, title = {Denudation processes in a tectonically active rift on different time scales}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-84534}, school = {Universit{\"a}t Potsdam}, pages = {xv, ix, 183}, year = {2015}, abstract = {Continental rifts are excellent regions where the interplay between extension, the build-up of topography, erosion and sedimentation can be evaluated in the context of landscape evolution. Rift basins also constitute important archives that potentially record the evolution and migration of species and the change of sedimentary conditions as a result of climatic change. Finally, rifts have increasingly become targets of resource exploration, such as hydrocarbons or geothermal systems. The study of extensional processes and the factors that further modify the mainly climate-driven surface process regime helps to identify changes in past and present tectonic and geomorphic processes that are ultimately recorded in rift landscapes. The Cenozoic East African Rift System (EARS) is an exemplary continental rift system and ideal natural laboratory to observe such interactions. The eastern and western branches of the EARS constitute first-order tectonic and topographic features in East Africa, which exert a profound influence on the evolution of topography, the distribution and amount of rainfall, and thus the efficiency of surface processes. The Kenya Rift is an integral part of the eastern branch of the EARS and is characterized by high-relief rift escarpments bounded by normal faults, gently tilted rift shoulders, and volcanic centers along the rift axis. Considering the Cenozoic tectonic processes in the Kenya Rift, the tectonically controlled cooling history of rift shoulders, the subsidence history of rift basins, and the sedimentation along and across the rift, may help to elucidate the morphotectonic evolution of this extensional province. While tectonic forcing of surface processes may play a minor role in the low-strain rift on centennial to millennial timescales, it may be hypothesized that erosion and sedimentation processes impacted by climate shifts associated with pronounced changes in the availability in moisture may have left important imprints in the landscape. In this thesis I combined thermochronological, geomorphic field observations, and morphometry of digital elevation models to reconstruct exhumation processes and erosion rates, as well as the effects of climate on the erosion processes in different sectors of the rift. I present three sets of results: (1) new thermochronological data from the northern and central parts of the rift to quantitatively constrain the Tertiary exhumation and thermal evolution of the Kenya Rift. (2) 10Be-derived catchment-wide mean denudation rates from the northern, central and southern rift that characterize erosional processes on millennial to present-day timescales; and (3) paleo-denudation rates in the northern rift to constrain climatically controlled shifts in paleoenvironmental conditions during the early Holocene (African Humid Period). Taken together, my studies show that time-temperature histories derived from apatite fission track (AFT) analysis, zircon (U-Th)/He dating, and thermal modeling bracket the onset of rifting in the Kenya Rift between 65-50 Ma and about 15 Ma to the present. These two episodes are marked by rapid exhumation and, uplift of the rift shoulders. Between 45 and 15 Ma the margins of the rift experienced very slow erosion/exhumation, with the accommodation of sediments in the rift basin. In addition, I determined that present-day denudation rates in sparsely vegetated parts of the Kenya Rift amount to 0.13 mm/yr, whereas denudation rates in humid and more densely vegetated sectors of the rift flanks reach a maximum of 0.08 mm/yr, despite steeper hillslopes. I inferred that hillslope gradient and vegetation cover control most of the variation in denudation rates across the Kenya Rift today. Importantly, my results support the notion that vegetation cover plays a fundamental role in determining the voracity of erosion of hillslopes through its stabilizing effects on the land surface. Finally, in a pilot study I highlighted how paleo-denudation rates in climatic threshold areas changed significantly during times of transient hydrologic conditions and involved a sixfold increase in erosion rates during increased humidity. This assessment is based on cosmogenic nuclide (10Be) dating of quartzitic deltaic sands that were deposited in the northern Kenya Rift during a highstand of Lake Suguta, which was associated with the Holocene African Humid Period. Taken together, my new results document the role of climate variability in erosion processes that impact climatic threshold environments, which may provide a template for potential future impacts of climate-driven changes in surface processes in the course of Global Change.}, language = {en} } @article{OeserStroncikMoskwaetal.2018, author = {Oeser, Ralf Andreas and Stroncik, Nicole and Moskwa, Lisa-Marie and Bernhard, Nadine and Schaller, Mirjam and Canessa, Rafaella and van den Brink, Liesbeth and K{\"o}ster, Moritz and Brucker, Emanuel and Stock, Svenja and Pablo Fuentes, Juan and Godoy, Roberto and Javier Matus, Francisco and Oses Pedraza, Romulo and Osses McIntyre, Pablo and Paulino, Leandro and Seguel, Oscar and Bader, Maaike Y. and Boy, Jens and Dippold, Michaela A. and Ehlers, Todd and K{\"u}hn, Peter and Kuzyakov, Yakov and Leinweber, Peter and Scholten, Thomas and Spielvogel, Sandra and Spohn, Marie and Ubernickel, Kirstin and Tielb{\"o}rger, Katja and Wagner, Dirk and von Blanckenburg, Friedhelm}, title = {Chemistry and microbiology of the Critical Zone along a steep climate and vegetation gradient in the Chilean Coastal Cordillera}, series = {Catena : an interdisciplinary journal of soil science, hydrology, geomorphology focusing on geoecology and landscape evolution}, volume = {170}, journal = {Catena : an interdisciplinary journal of soil science, hydrology, geomorphology focusing on geoecology and landscape evolution}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0341-8162}, doi = {10.1016/j.catena.2018.06.002}, pages = {183 -- 203}, year = {2018}, abstract = {From north to south, denudation rates from cosmogenic nuclides are similar to 10 t km(-2) yr(-1) at the arid Pan de Aziicar site, similar to 20 t km(2) yr(-1) at the semi-arid site of Santa Gracia, -60 t km(-2) yr(-1) at the Mediterranean climate site of La Campana, and similar to 30 t km(-2) yr(-1) at the humid site of Nahuelbuta. A and B horizons increase in thickness and elemental depletion or enrichment increases from north (similar to 26 degrees S) to south (similar to 38 degrees S) in these horizons. Differences in the degree of chemical weathering, quantified by the chemical depletion fraction (CDF), are significant only between the arid and sparsely vegetated site and the other three sites. Differences in the CDF between the sites, and elemental depletion within the sites are sometimes smaller than the variations induced by the bedrock heterogeneity. Microbial abundances (bacteria and archaea) in saprolite substantially increase from the arid to the semi-arid sites. With this study, we provide a comprehensive dataset characterizing the Critical Zone geochemistry in the Chilean Coastal Cordillera. This dataset confirms climatic controls on weathering and denudation rates and provides prerequisites to quantify the role of biota in future studies.}, language = {en} } @phdthesis{Munack2014, author = {Munack, Henry}, title = {From phantom blocks to denudational noise}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-72629}, school = {Universit{\"a}t Potsdam}, pages = {xvii, 172}, year = {2014}, abstract = {Knowing the rates and mechanisms of geomorphic process that shape the Earth's surface is crucial to understand landscape evolution. Modern methods for estimating denudation rates enable us to quantitatively express and compare processes of landscape downwearing that can be traced through time and space—from the seemingly intact, though intensely shattered, phantom blocks of the catastrophically fragmented basal facies of giant rockslides up to denudational noise in orogen-wide data sets averaging over several millennia. This great variety of spatiotemporal scales of denudation rates is both boon and bane of geomorphic process rates. Indeed, processes of landscape downwearing can be traced far back in time, helping us to understand the Earth's evolution. Yet, this benefit may turn into a drawback due to scaling issues if these rates are to be compared across different observation timescales. This thesis investigates the mechanisms, patterns and rates of landscape downwearing across the Himalaya-Tibet orogen. Accounting for the spatiotemporal variability of denudation processes, this thesis addresses landscape downwearing on three distinctly different spatial scales, starting off at the local scale of individual hillslopes where considerable amounts of debris are generated from rock instantaneously: Rocksliding in active mountains is a major impetus of landscape downwearing. Study I provides a systematic overview of the internal sedimentology of giant rockslide deposits and thus meets the challenge of distinguishing them from macroscopically and microscopically similar glacial deposits, tectonic fault-zone breccias, and impact breccias. This distinction is important to avoid erroneous or misleading deduction of paleoclimatic or tectonic implications. -> Grain size analysis shows that rockslide-derived micro-breccia closely resemble those from meteorite impact or tectonic faults. -> Frictionite may occur more frequently that previously assumed. -> M{\"o}ssbauer-spectroscopy derived results indicate basal rock melting in the absence of water, involving short-term temperatures of >1500°C. Zooming out, Study II tracks the fate of these sediments, using the example of the upper Indus River, NW India. There we use river sand samples from the Indus and its tributaries to estimate basin-averaged denudation rates along a ~320-km reach across the Tibetan Plateau margin, to answer the question whether incision into the western Tibetan Plateau margin is currently active or not. -> We find an about one-order-of-magnitude upstream decay—from 110 to 10 mm kyr^-1—of cosmogenic Be-10-derived basin-wide denudation rates across the morphological knickpoint that marks the transition from the Transhimalayan ranges to the Tibetan Plateau. This trend is corroborated by independent bulk petrographic and heavy mineral analysis of the same samples. -> From the observation that tributary-derived basin-wide denudation rates do not increase markedly until ~150-200 km downstream of the topographic plateau margin we conclude that incision into the Tibetan Plateau is inactive. -> Comparing our postglacial Be-10-derived denudation rates to long-term (>10^6 yr) estimates from low-temperature thermochronometry, ranging from 100 to 750 mm kyr^-1, points to an order- of-magnitude decay of rates of landscape downwearing towards present. We infer that denudation rates must have been higher in the Quaternary, probably promoted by the interplay of glacial and interglacial stages. Our investigation of regional denudation patterns in the upper Indus finally is an integral part of Study III that synthesizes denudation of the Himalaya-Tibet orogen. In order to identify general and time-invariant predictors for Be-10-derived denudation rates we analyze tectonic, climatic and topographic metrics from an inventory of 297 drainage basins from various parts of the orogen. Aiming to get insight to the full response distributions of denudation rate to tectonic, climatic and topographic candidate predictors, we apply quantile regression instead of ordinary least squares regression, which has been standard analysis tool in previous studies that looked for denudation rate predictors. -> We use principal component analysis to reduce our set of 26 candidate predictors, ending up with just three out of these: Aridity Index, topographic steepness index, and precipitation of the coldest quarter of the year. -> Topographic steepness index proves to perform best during additive quantile regression. Our consequent prediction of denudation rates on the basin scale involves prediction errors that remain between 5 and 10 mm kyr^-1. -> We conclude that while topographic metrics such as river-channel steepness and slope gradient—being representative on timescales that our cosmogenic Be-10-derived denudation rates integrate over—generally appear to be more suited as predictors than climatic and tectonic metrics based on decadal records.}, language = {en} } @article{HippeKoberZeilingeretal.2012, author = {Hippe, Kristina and Kober, Florian and Zeilinger, Gerold and Ivy-Ochs, Susan and Maden, Colin and Wacker, Lukas and Kubik, Peter W. and Wieler, Rainer}, title = {Quantifying denudation rates and sediment storage on the eastern Altiplano, Bolivia, using cosmogenic Be-10, Al-26, and in situ C-14}, series = {Geomorphology : an international journal on pure and applied geomorphology}, volume = {179}, journal = {Geomorphology : an international journal on pure and applied geomorphology}, number = {22}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0169-555X}, doi = {10.1016/j.geomorph.2012.07.031}, pages = {58 -- 70}, year = {2012}, abstract = {Denudation processes and sediment transfer are investigated in a high-elevation, low-relief environment (eastern Altiplano, Bolivia) using Be-10, Al-26, and in situ C-14 analysis in fluvial sediments. Concentrations of the long-lived nuclides Be-10 and Al-26 yield consistently low catchment-wide denudation rates of similar to 3-29 mm ky(-1) (integrating over 21-194 ky), which reflect the low geomorphic gradients and the discontinuity of fluvial transport along the eastern Altiplano margin. No significant correlation is recorded between denudation rates of individual catchments and morphological basin parameters (slope, area, elevation). This is attributed to the overall little variability in morphology. The agreement between the denudation rates and published modern sediment discharge data suggests steady landscape evolution of the eastern Altiplano from the latest Pleistocene until today. While Be-10 and Al-26 provide long-term estimates on sediment production, in situ cosmogenic C-14 is used to trace short-term sediment storage. In situ C-14 concentrations are comparatively low indicating that C-14 decayed during alluvial storage over at least the past similar to 11-20 ky. We assume storage at shallow depth (2 m) and consider the influence of soil-mantled hillslopes on the in situ C-14 concentration. Our results illustrate the importance of sediment storage even over short distances and demonstrate the potential of in situ C-14 to study sediment routing and transfer times within drainage systems. However, this study also demonstrates that the long-lived Be-10 and Al-26 nuclides can provide adequate estimates on long-term denudation rates even if sediment transport is not fast but interrupted by several thousands of years of storage.}, language = {en} }