@phdthesis{WindirschWoiwode2024, author = {Windirsch-Woiwode, Torben}, title = {Permafrost carbon stabilisation by recreating a herbivore-driven ecosystem}, doi = {10.25932/publishup-62424}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-624240}, school = {Universit{\"a}t Potsdam}, pages = {X, 104, A-57}, year = {2024}, abstract = {With Arctic ground as a huge and temperature-sensitive carbon reservoir, maintaining low ground temperatures and frozen conditions to prevent further carbon emissions that contrib-ute to global climate warming is a key element in humankind's fight to maintain habitable con-ditions on earth. Former studies showed that during the late Pleistocene, Arctic ground condi-tions were generally colder and more stable as the result of an ecosystem dominated by large herbivorous mammals and vast extents of graminoid vegetation - the mammoth steppe. Characterised by high plant productivity (grassland) and low ground insulation due to animal-caused compression and removal of snow, this ecosystem enabled deep permafrost aggrad-ation. Now, with tundra and shrub vegetation common in the terrestrial Arctic, these effects are not in place anymore. However, it appears to be possible to recreate this ecosystem local-ly by artificially increasing animal numbers, and hence keep Arctic ground cold to reduce or-ganic matter decomposition and carbon release into the atmosphere. By measuring thaw depth, total organic carbon and total nitrogen content, stable carbon iso-tope ratio, radiocarbon age, n-alkane and alcohol characteristics and assessing dominant vegetation types along grazing intensity transects in two contrasting Arctic areas, it was found that recreating conditions locally, similar to the mammoth steppe, seems to be possible. For permafrost-affected soil, it was shown that intensive grazing in direct comparison to non-grazed areas reduces active layer depth and leads to higher TOC contents in the active layer soil. For soil only frozen on top in winter, an increase of TOC with grazing intensity could not be found, most likely because of confounding factors such as vertical water and carbon movement, which is not possible with an impermeable layer in permafrost. In both areas, high animal activity led to a vegetation transformation towards species-poor graminoid-dominated landscapes with less shrubs. Lipid biomarker analysis revealed that, even though the available organic material is different between the study areas, in both permafrost-affected and sea-sonally frozen soils the organic material in sites affected by high animal activity was less de-composed than under less intensive grazing pressure. In conclusion, high animal activity af-fects decomposition processes in Arctic soils and the ground thermal regime, visible from reduced active layer depth in permafrost areas. Therefore, grazing management might be utilised to locally stabilise permafrost and reduce Arctic carbon emissions in the future, but is likely not scalable to the entire permafrost region.}, language = {en} } @phdthesis{Strauss2014, author = {Strauß, Jens}, title = {Organic carbon in ice-rich permafrost}, doi = {10.25932/publishup-7523}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-75236}, school = {Universit{\"a}t Potsdam}, pages = {XIII, 107, 102}, year = {2014}, abstract = {Permafrost, defined as ground that is frozen for at least two consecutive years, is a distinct feature of the terrestrial unglaciated Arctic. It covers approximately one quarter of the land area of the Northern Hemisphere (23,000,000 km²). Arctic landscapes, especially those underlain by permafrost, are threatened by climate warming and may degrade in different ways, including active layer deepening, thermal erosion, and development of rapid thaw features. In Siberian and Alaskan late Pleistocene ice-rich Yedoma permafrost, rapid and deep thaw processes (called thermokarst) can mobilize deep organic carbon (below 3 m depth) by surface subsidence due to loss of ground ice. Increased permafrost thaw could cause a feedback loop of global significance if its stored frozen organic carbon is reintroduced into the active carbon cycle as greenhouse gases, which accelerate warming and inducing more permafrost thaw and carbon release. To assess this concern, the major objective of the thesis was to enhance the understanding of the origin of Yedoma as well as to assess the associated organic carbon pool size and carbon quality (concerning degradability). The key research questions were: - How did Yedoma deposits accumulate? - How much organic carbon is stored in the Yedoma region? - What is the susceptibility of the Yedoma region's carbon for future decomposition? To address these three research questions, an interdisciplinary approach, including detailed field studies and sampling in Siberia and Alaska as well as methods of sedimentology, organic biogeochemistry, remote sensing, statistical analyses, and computational modeling were applied. To provide a panarctic context, this thesis additionally includes results both from a newly compiled northern circumpolar carbon database and from a model assessment of carbon fluxes in a warming Arctic. The Yedoma samples show a homogeneous grain-size composition. All samples were poorly sorted with a multi-modal grain-size distribution, indicating various (re-) transport processes. This contradicts the popular pure loess deposition hypothesis for the origin of Yedoma permafrost. The absence of large-scale grinding processes via glaciers and ice sheets in northeast Siberian lowlands, processes which are necessary to create loess as material source, suggests the polygenetic origin of Yedoma deposits. Based on the largest available data set of the key parameters, including organic carbon content, bulk density, ground ice content, and deposit volume (thickness and coverage) from Siberian and Alaskan study sites, this thesis further shows that deep frozen organic carbon in the Yedoma region consists of two distinct major reservoirs, Yedoma deposits and thermokarst deposits (formed in thaw-lake basins). Yedoma deposits contain ~80 Gt and thermokarst deposits ~130 Gt organic carbon, or a total of ~210 Gt. Depending on the approach used for calculating uncertainty, the range for the total Yedoma region carbon store is ±75 \% and ±20 \% for conservative single and multiple bootstrapping calculations, respectively. Despite the fact that these findings reduce the Yedoma region carbon pool by nearly a factor of two compared to previous estimates, this frozen organic carbon is still capable of inducing a permafrost carbon feedback to climate warming. The complete northern circumpolar permafrost region contains between 1100 and 1500 Gt organic carbon, of which ~60 \% is perennially frozen and decoupled from the short-term carbon cycle. When thawed and reintroduced into the active carbon cycle, the organic matter qualities become relevant. Furthermore, results from investigations into Yedoma and thermokarst organic matter quality studies showed that Yedoma and thermokarst organic matter exhibit no depth-dependent quality trend. This is evidence that after freezing, the ancient organic matter is preserved in a state of constant quality. The applied alkane and fatty-acid-based biomarker proxies including the carbon-preference and the higher-land-plant-fatty-acid indices show a broad range of organic matter quality and thus no significantly different qualities of the organic matter stored in thermokarst deposits compared to Yedoma deposits. This lack of quality differences shows that the organic matter biodegradability depends on different decomposition trajectories and the previous decomposition/incorporation history. Finally, the fate of the organic matter has been assessed by implementing deep carbon pools and thermokarst processes in a permafrost carbon model. Under various warming scenarios for the northern circumpolar permafrost region, model results show a carbon release from permafrost regions of up to ~140 Gt and ~310 Gt by the years 2100 and 2300, respectively. The additional warming caused by the carbon release from newly-thawed permafrost contributes 0.03 to 0.14°C by the year 2100. The model simulations predict that a further increase by the 23rd century will add 0.4°C to global mean surface air temperatures. In conclusion, Yedoma deposit formation during the late Pleistocene was dominated by water-related (alluvial/fluvial/lacustrine) as well as aeolian processes under periglacial conditions. The circumarctic permafrost region, including the Yedoma region, contains a substantial amount of currently frozen organic carbon. The carbon of the Yedoma region is well-preserved and therefore available for decomposition after thaw. A missing quality-depth trend shows that permafrost preserves the quality of ancient organic matter. When the organic matter is mobilized by deep degradation processes, the northern permafrost region may add up to 0.4°C to the global warming by the year 2300.}, language = {en} } @phdthesis{Stock2010, author = {Stock, Maria}, title = {Charakterisierung der troposph{\"a}rischen Aerosolvariabilit{\"a}t in der europ{\"a}ischen Arktis}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-49203}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {Auf der Grundlage von Sonnenphotometermessungen an drei Messstationen (AWIPEV/ Koldewey in Ny-{\AA}lesund (78.923 °N, 11.923 °O) 1995-2008, 35. Nordpol Driftstation - NP-35 (84.3-85.5 °N, 41.7-56.6 °O) M{\"a}rz/April 2008, Sodankyl{\"a} (67.37 °N, 26.65 °O) 2004-2007) wird die Aerosolvariabilit{\"a}t in der europ{\"a}ischen Arktis und deren Ursachen untersucht. Der Schwerpunkt liegt dabei auf der Frage des Zusammenhanges zwischen den an den Stationen gemessenen Aerosolparametern (Aerosol optische Dicke, Angstr{\"o}m Koeffizient, usw.) und dem Transport des Aerosols sowohl auf kurzen Zeitskalen (Tagen) als auch auf langen Zeitskalen (Monate, Jahre). Um diesen Zusammenhang herzustellen, werden f{\"u}r die kurzen Zeitskalen mit dem Trajektorienmodell PEP-Tracer 5-Tage R{\"u}ckw{\"a}rtstrajektorien in drei Starth{\"o}hen (850 hPa, 700 hPa, 500 hPa) f{\"u}r die Uhrzeiten 00, 06, 12 und 18 Uhr berechnet. Mit Hilfe der nicht-hierarchischen Clustermethode k-means werden die berechneten R{\"u}ckw{\"a}rtstrajektorien dann zu Gruppen zusammengefasst und bestimmten Quellgebieten und den gemessenen Aerosol optischen Dicken zugeordnet. Die Zuordnung von Aerosol optischer Dicke und Quellregion ergibt keinen eindeutigen Zusammenhang zwischen dem Transport verschmutzter Luftmassen aus Europa oder Russland bzw. Asien und erh{\"o}hter Aerosol optischer Dicke. Dennoch ist f{\"u}r einen konkreten Einzelfall (M{\"a}rz 2008) ein direkter Zusammenhang von Aerosoltransport und hohen Aerosol optischen Dicken nachweisbar. In diesem Fall gelangte Waldbrandaerosol aus S{\"u}dwestrussland in die Arktis und konnte sowohl auf der NP-35 als auch in Ny-{\AA}lesund beobachtet werden. In einem weiteren Schritt wird mit Hilfe der EOF-Analyse untersucht, inwieweit großskalige atmosph{\"a}rische Zirkulationsmuster f{\"u}r die Aerosolvariabilit{\"a}t in der europ{\"a}ischen Arktis verantwortlich sind. {\"A}hnlich wie bei der Trajektorienanalyse ist auch die Verbindung der atmosph{\"a}rischen Zirkulation zu den Photometermessungen an den Stationen in der Regel nur schwach ausgepr{\"a}gt. Eine Ausnahme findet sich bei der Betrachtung des Jahresganges des Bodendruckes und der Aerosol optischen Dicke. Hohe Aerosol optische Dicken treten im Fr{\"u}hjahr zum einen dann auf, wenn durch das Islandtief und das sibirische Hochdruckgebiet Luftmassen aus Europa oder Russland/Asien in die Arktis gelangen, und zum anderen, wenn sich ein kr{\"a}ftiges Hochdruckgebiet {\"u}ber Gr{\"o}nland und weiten Teilen der Arktis befindet. Ebenso zeigt sich, dass der {\"U}bergang zwischen Fr{\"u}hjahr und Sommer zumindest teilweise bedingt ist durch denWechsel vom stabilen Polarhoch im Winter und Fr{\"u}hjahr zu einer st{\"a}rker von Tiefdruckgebieten bestimmten arktischen Atmosph{\"a}re im Sommer. Die geringere Aerosolkonzentration im Sommer kann zum Teil mit einer Zunahme der nassen Deposition als Aerosolsenke begr{\"u}ndet werden. F{\"u}r Ny-{\AA}lesund wird neben den Transportmustern auch die chemische Zusammensetzung des Aerosols mit Hilfe von Impaktormessungen an der Zeppelinstation auf dem Zeppelinberg (474m {\"u}.NN) nahe Ny-{\AA}lesund abgeleitet. Dabei ist die positive Korrelation der Aerosoloptischen Dicke mit der Konzentration von Sulfationen und Ruß sehr deutlich. Beide Stoffe gelangen zu einem Großteil durch anthropogene Emissionen in die Atmosph{\"a}re. Die damit nachweisbar anthropogen gepr{\"a}gte Zusammensetzung des arktischen Aerosols steht im Widerspruch zum nicht eindeutig herstellbaren Zusammenhang mit dem Transport des Aerosols aus Industrieregionen. Dies kann nur durch einen oder mehrere gleichzeitig stattfindende Transformationsprozesse (z. B. Nukleation von Schwefels{\"a}urepartikeln) w{\"a}hrend des Transportes aus den Quellregionen (Europa, Russland) erkl{\"a}rt werden.}, language = {de} } @phdthesis{Stettner2018, author = {Stettner, Samuel}, title = {Exploring the seasonality of rapid Arctic changes from space}, doi = {10.25932/publishup-42578}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-425783}, school = {Universit{\"a}t Potsdam}, pages = {XIII, 132}, year = {2018}, abstract = {Arctic warming has implications for the functioning of terrestrial Arctic ecosystems, global climate and socioeconomic systems of northern communities. A research gap exists in high spatial resolution monitoring and understanding of the seasonality of permafrost degradation, spring snowmelt and vegetation phenology. This thesis explores the diversity and utility of dense TerraSAR-X (TSX) X-Band time series for monitoring ice-rich riverbank erosion, snowmelt, and phenology of Arctic vegetation at long-term study sites in the central Lena Delta, Russia and on Qikiqtaruk (Herschel Island), Canada. In the thesis the following three research questions are addressed: • Is TSX time series capable of monitoring the dynamics of rapid permafrost degradation in ice-rich permafrost on an intra-seasonal scale and can these datasets in combination with climate data identify the climatic drivers of permafrost degradation? • Can multi-pass and multi-polarized TSX time series adequately monitor seasonal snow cover and snowmelt in small Arctic catchments and how does it perform compared to optical satellite data and field-based measurements? • Do TSX time series reflect the phenology of Arctic vegetation and how does the recorded signal compare to in-situ greenness data from RGB time-lapse camera data and vegetation height from field surveys? To answer the research questions three years of TSX backscatter data from 2013 to 2015 for the Lena Delta study site and from 2015 to 2017 for the Qikiqtaruk study site were used in quantitative and qualitative analysis complimentary with optical satellite data and in-situ time-lapse imagery. The dynamics of intra-seasonal ice-rich riverbank erosion in the central Lena Delta, Russia were quantified using TSX backscatter data at 2.4 m spatial resolution in HH polarization and validated with 0.5 m spatial resolution optical satellite data and field-based time-lapse camera data. Cliff top lines were automatically extracted from TSX intensity images using threshold-based segmentation and vectorization and combined in a geoinformation system with manually digitized cliff top lines from the optical satellite data and rates of erosion extracted from time-lapse cameras. The results suggest that the cliff top eroded at a constant rate throughout the entire erosional season. Linear mixed models confirmed that erosion was coupled with air temperature and precipitation at an annual scale, seasonal fluctuations did not influence 22-day erosion rates. The results highlight the potential of HH polarized X-Band backscatter data for high temporal resolution monitoring of rapid permafrost degradation. The distinct signature of wet snow in backscatter intensity images of TSX data was exploited to generate wet snow cover extent (SCE) maps on Qikiqtaruk at high temporal resolution. TSX SCE showed high similarity to Landsat 8-derived SCE when using cross-polarized VH data. Fractional snow cover (FSC) time series were extracted from TSX and optical SCE and compared to FSC estimations from in-situ time-lapse imagery. The TSX products showed strong agreement with the in-situ data and significantly improved the temporal resolution compared to the Landsat 8 time series. The final combined FSC time series revealed two topography-dependent snowmelt patterns that corresponded to in-situ measurements. Additionally TSX was able to detect snow patches longer in the season than Landsat 8, underlining the advantage of TSX for detection of old snow. The TSX-derived snow information provided valuable insights into snowmelt dynamics on Qikiqtaruk previously not available. The sensitivity of TSX to vegetation structure associated with phenological changes was explored on Qikiqtaruk. Backscatter and coherence time series were compared to greenness data extracted from in-situ digital time-lapse cameras and detailed vegetation parameters on 30 areas of interest. Supporting previous results, vegetation height corresponded to backscatter intensity in co-polarized HH/VV at an incidence angle of 31°. The dry, tall shrub dominated ecological class showed increasing backscatter with increasing greenness when using the cross polarized VH/HH channel at 32° incidence angle. This is likely driven by volume scattering of emerging and expanding leaves. Ecological classes with more prostrate vegetation and higher bare ground contributions showed decreasing backscatter trends over the growing season in the co-polarized VV/HH channels likely a result of surface drying instead of a vegetation structure signal. The results from shrub dominated areas are promising and provide a complementary data source for high temporal monitoring of vegetation phenology. Overall this thesis demonstrates that dense time series of TSX with optical remote sensing and in-situ time-lapse data are complementary and can be used to monitor rapid and seasonal processes in Arctic landscapes at high spatial and temporal resolution.}, language = {en} } @phdthesis{Sommerfeld2015, author = {Sommerfeld, Anja}, title = {Quantification of internal variability of the arctic summer atmosphere based on HIRHAM5 ensemble simulations}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-85347}, school = {Universit{\"a}t Potsdam}, pages = {VII, 110, vi}, year = {2015}, abstract = {The non-linear behaviour of the atmospheric dynamics is not well understood and makes the evaluation and usage of regional climate models (RCMs) difficult. Due to these non-linearities, chaos and internal variability (IV) within the RCMs are induced, leading to a sensitivity of RCMs to their initial conditions (IC). The IV is the ability of RCMs to realise different solutions of simulations that differ in their IC, but have the same lower and lateral boundary conditions (LBC), hence can be defined as the across-member spread between the ensemble members. For the investigation of the IV and the dynamical and diabatic contributions generating the IV four ensembles of RCM simulations are performed with the atmospheric regional model HIRHAM5. The integration area is the Arctic and each ensemble consists of 20 members. The ensembles cover the time period from July to September for the years 2006, 2007, 2009 and 2012. The ensemble members have the same LBC and differ in their IC only. The different IC are arranged by an initialisation time that shifts successively by six hours. Within each ensemble the first simulation starts on 1st July at 00 UTC and the last simulation starts on 5th July at 18 UTC and each simulation runs until 30th September. The analysed time period ranges from 6th July to 30th September, the time period that is covered by all ensemble members. The model runs without any nudging to allow a free development of each simulation to get the full internal variability within the HIRHAM5. As a measure of the model generated IV, the across-member standard deviation and the across-member variance is used and the dynamical and diabatic processes influencing the IV are estimated by applying a diagnostic budget study for the IV tendency of the potential temperature developed by Nikiema and Laprise [2010] and Nikiema and Laprise [2011]. The diagnostic budget study is based on the first law of thermodynamics for potential temperature and the mass-continuity equation. The resulting budget equation reveals seven contributions to the potential temperature IV tendency. As a first study, this work analyses the IV within the HIRHAM5. Therefore, atmospheric circulation parameters and the potential temperature for all four ensemble years are investigated. Similar to previous studies, the IV fluctuates strongly in time. Further, due to the fact that all ensemble members are forced with the same LBC, the IV depends on the vertical level within the troposphere, with high values in the lower troposphere and at 500 hPa and low values in the upper troposphere and at the surface. By the same reason, the spatial distribution shows low values of IV at the boundaries of the model domain. The diagnostic budget study for the IV tendency of potential temperature reveals that the seven contributions fluctuate in time like the IV. However, the individual terms reach different absolute magnitudes. The budget study identifies the horizontal and vertical 'baroclinic' terms as the main contributors to the IV tendency, with the horizontal 'baroclinic' term producing and the vertical 'baroclinic' term reducing the IV. The other terms fluctuate around zero, because they are small in general or are balanced due to the domain average. The comparison of the results obtained for the four different ensembles (summers 2006, 2007, 2009 and 2012) reveals that on average the findings for each ensemble are quite similar concerning the magnitude and the general pattern of IV and its contributions. However, near the surface a weaker IV is produced with decreasing sea ice extent. This is caused by a smaller impact of the horizontal 'baroclinic' term over some regions and by the changing diabatic processes, particularly a more intense reducing tendency of the IV due to condensative heating. However, it has to be emphasised that the behaviour of the IV and its dynamical and diabatic contributions are influenced mainly by complex atmospheric feedbacks and large-scale processes and not by the sea ice distribution. Additionally, a comparison with a second RCM covering the Arctic and using the same LBCs and IC is performed. For both models very similar results concerning the IV and its dynamical and diabatic contributions are found. Hence, this investigation leads to the conclusion that the IV is a natural phenomenon and is independent from the applied RCM.}, language = {en} } @phdthesis{Morgenstern2012, author = {Morgenstern, Anne}, title = {Thermokarst and thermal erosion : degradation of Siberian ice-rich permafrost}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-62079}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {Current climate warming is affecting arctic regions at a faster rate than the rest of the world. This has profound effects on permafrost that underlies most of the arctic land area. Permafrost thawing can lead to the liberation of considerable amounts of greenhouse gases as well as to significant changes in the geomorphology, hydrology, and ecology of the corresponding landscapes, which may in turn act as a positive feedback to the climate system. Vast areas of the east Siberian lowlands, which are underlain by permafrost of the Yedoma-type Ice Complex, are particularly sensitive to climate warming because of the high ice content of these permafrost deposits. Thermokarst and thermal erosion are two major types of permafrost degradation in periglacial landscapes. The associated landforms are prominent indicators of climate-induced environmental variations on the regional scale. Thermokarst lakes and basins (alasses) as well as thermo-erosional valleys are widely distributed in the coastal lowlands adjacent to the Laptev Sea. This thesis investigates the spatial distribution and morphometric properties of these degradational features to reconstruct their evolutionary conditions during the Holocene and to deduce information on the potential impact of future permafrost degradation under the projected climate warming. The methodological approach is a combination of remote sensing, geoinformation, and field investigations, which integrates analyses on local to regional spatial scales. Thermokarst and thermal erosion have affected the study region to a great extent. In the Ice Complex area of the Lena River Delta, thermokarst basins cover a much larger area than do present thermokarst lakes on Yedoma uplands (20.0 and 2.2 \%, respectively), which indicates that the conditions for large-area thermokarst development were more suitable in the past. This is supported by the reconstruction of the development of an individual alas in the Lena River Delta, which reveals a prolonged phase of high thermokarst activity since the Pleistocene/Holocene transition that created a large and deep basin. After the drainage of the primary thermokarst lake during the mid-Holocene, permafrost aggradation and degradation have occurred in parallel and in shorter alternating stages within the alas, resulting in a complex thermokarst landscape. Though more dynamic than during the first phase, late Holocene thermokarst activity in the alas was not capable of degrading large portions of Pleistocene Ice Complex deposits and substantially altering the Yedoma relief. Further thermokarst development in existing alasses is restricted to thin layers of Holocene ice-rich alas sediments, because the Ice Complex deposits underneath the large primary thermokarst lakes have thawed completely and the underlying deposits are ice-poor fluvial sands. Thermokarst processes on undisturbed Yedoma uplands have the highest impact on the alteration of Ice Complex deposits, but will be limited to smaller areal extents in the future because of the reduced availability of large undisturbed upland surfaces with poor drainage. On Kurungnakh Island in the central Lena River Delta, the area of Yedoma uplands available for future thermokarst development amounts to only 33.7 \%. The increasing proximity of newly developing thermokarst lakes on Yedoma uplands to existing degradational features and other topographic lows decreases the possibility for thermokarst lakes to reach large sizes before drainage occurs. Drainage of thermokarst lakes due to thermal erosion is common in the study region, but thermo-erosional valleys also provide water to thermokarst lakes and alasses. Besides these direct hydrological interactions between thermokarst and thermal erosion on the local scale, an interdependence between both processes exists on the regional scale. A regional analysis of extensive networks of thermo-erosional valleys in three lowland regions of the Laptev Sea with a total study area of 5,800 km² found that these features are more common in areas with higher slopes and relief gradients, whereas thermokarst development is more pronounced in flat lowlands with lower relief gradients. The combined results of this thesis highlight the need for comprehensive analyses of both, thermokarst and thermal erosion, in order to assess past and future impacts and feedbacks of the degradation of ice-rich permafrost on hydrology and climate of a certain region.}, language = {en} } @phdthesis{MogrovejoArias2021, author = {Mogrovejo Arias, Diana Carolina}, title = {Assessment of the frequency and relevance of potentially pathogenic phenotypes in microbial isolates from Arctic environments}, school = {Universit{\"a}t Potsdam}, pages = {125}, year = {2021}, abstract = {The Arctic environments constitute rich and dynamic ecosystems, dominated by microorganisms extremely well adapted to survive and function under severe conditions. A range of physiological adaptations allow the microbiota in these habitats to withstand low temperatures, low water and nutrient availability, high levels of UV radiation, etc. In addition, other adaptations of clear competitive nature are directed at not only surviving but thriving in these environments, by disrupting the metabolism of neighboring cells and affecting intermicrobial communication. Since Arctic microbes are bioindicators which amplify climate alterations in the environment, the Arctic region presents the opportunity to study local microbiota and carry out research about interesting, potentially virulent phenotypes that could be dispersed into other habitats around the globe as a consequence of accelerating climate change. In this context, exploration of Arctic habitats as well as descriptions of the microbes inhabiting them are abundant but microbial competitive strategies commonly associated with virulence and pathogens are rarely reported. In this project, environmental samples from the Arctic region were collected and microorganisms (bacteria and fungi) were isolated. The clinical relevance of these microorganisms was assessed by observing the following virulence markers: ability to grow at a range of temperatures, expression of antimicrobial resistance and production of hemolysins. The aim of this project is to determine the frequency and relevance of these characteristics in an effort to understand microbial adaptations in habitats threatened by climate change. The isolates obtained and described here were able to grow at a range of temperatures, in some cases more than 30 °C higher than their original isolation temperature. A considerable number of them consistently expressed compounds capable of lysing sheep and bovine erythrocytes on blood agar at different incubation temperatures. Ethanolic extracts of these bacteria were able to cause rapid and complete lysis of erythrocyte suspensions and might even be hemolytic when assayed on human blood. In silico analyses showed a variety of resistance elements, some of them novel, against natural and synthetic antimicrobial compounds. In vitro experiments against a number of antimicrobial compounds showed resistance phenotypes belonging to wild-type populations and some non-wild type which clearly denote human influence in the acquisition of antimicrobial resistance. The results of this project demonstrate the presence of virulence-associated factors expressed by microorganisms of natural, non-clinical environments. This study contains some of the first reports, to the best of our knowledge, of hemolytic microbes isolated from the Arctic region. In addition, it provides additional information about the presence and expression of intrinsic and acquired antimicrobial resistance in environmental isolates, contributing to the understanding of the evolution of relevant pathogenic species and opportunistic pathogens. Finally, this study highlights some of the potential risks associated with changes in the polar regions (habitat melting and destruction, ecosystem transition and re-colonization) as important indirect consequences of global warming and altered climatic conditions around the planet.}, language = {en} } @phdthesis{Mitzscherling2020, author = {Mitzscherling, Julia}, title = {Microbial communities in submarine permafrost and their response to permafrost degradation and warming}, doi = {10.25932/publishup-47124}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-471240}, school = {Universit{\"a}t Potsdam}, pages = {I, 231}, year = {2020}, abstract = {The Arctic region is especially impacted by global warming as temperatures in high latitude regions have increased and are predicted to further rise at levels above the global average. This is crucial to Arctic soils and the shallow shelves of the Arctic Ocean as they are underlain by permafrost. Perennially frozen ground is a habitat for a large number and great diversity of viable microorganisms, which can remain active even under freezing conditions. Warming and thawing of permafrost makes trapped soil organic carbon more accessible to microorganisms. They can transform it to the greenhouse gases carbon dioxide, methane and nitrous oxide. On the other hand, it is assumed that thawing of the frozen ground stimulates microbial activity and carbon turnover. This can lead to a positive feedback loop of warming and greenhouse gas release. Submarine permafrost covers most areas of the Siberian Arctic Shelf and contains a large though unquantified carbon pool. However, submarine permafrost is not only affected by changes in the thermal regime but by drastic changes in the geochemical composition as it formed under terrestrial conditions and was inundated by Holocene sea level rise and coastal erosion. Seawater infiltration into permafrost sediments resulted in an increase of the pore water salinity and, thus, in thawing of permafrost in the upper sediment layers even at subzero temperatures. The permafrost below, which was not affected by seawater, remained ice-bonded, but warmed through seawater heat fluxes. The objective of this thesis was to study microbial communities in submarine permafrost with a focus on their response to seawater influence and long-term warming using a combined approach of molecular biological and physicochemical analyses. The microbial abundance, community composition and structure as well as the diversity were investigated in drill cores from two locations in the Laptev Sea, which were subjected to submarine conditions for centuries to millennia. The microbial abundance was measured through total cell counts and copy numbers of the 16S rRNA gene and of functional genes. The latter comprised genes which are indicative for methane production (mcrA) and sulfate reduction (dsrB). The microbial community was characterized by high-throughput-sequencing of the 16S rRNA gene. Physicochemical analyses included the determination of the pore water geochemical and stable isotopic composition, which were used to describe the degree of seawater influence. One major outcome of the thesis is that the submarine permafrost stratified into different so-called pore water units centuries as well as millennia after inundation: (i) sediments that were mixed with seafloor sediments, (ii) sediments that were infiltrated with seawater, and (iii) sediments that were unaffected by seawater. This stratification was reflected in the submarine permafrost microbial community composition only millennia after inundation but not on time-scales of centuries. Changes in the community composition as well as abundance were used as a measure for microbial activity and the microbial response to changing thermal and geochemical conditions. The results were discussed in the context of permafrost temperature, pore water composition, paleo-climatic proxies and sediment age. The combination of permafrost warming and increasing salinity as well as permafrost warming alone resulted in a disturbance of the microbial communities at least on time-scales of centuries. This was expressed by a loss of microbial abundance and bacterial diversity. At the same time, the bacterial community of seawater unaffected but warmed permafrost was mainly determined by environmental and climatic conditions at the time of sediment deposition. A stimulating effect of warming was observed only in seawater unaffected permafrost after millennia-scale inundation, visible through increased microbial abundance and reduced amounts of substrate. Despite submarine exposure for centuries to millennia, the community of bacteria in submarine permafrost still generally resembled the community of terrestrial permafrost. It was dominated by phyla like Actinobacteria, Chloroflexi, Firmicutes, Gemmatimonadetes and Proteobacteria, which can be active under freezing conditions. Moreover, the archaeal communities of both study sites were found to harbor high abundances of marine and terrestrial anaerobic methane oxidizing archaea (ANME). Results also suggested ANME populations to be active under in situ conditions at subzero temperatures. Modeling showed that potential anaerobic oxidation of methane (AOM) could mitigate the release of almost all stored or microbially produced methane from thawing submarine permafrost. Based on the findings presented in this thesis, permafrost warming and thawing under submarine conditions as well as permafrost warming without thaw are supposed to have marginal effects on the microbial abundance and community composition, and therefore likely also on carbon mobilization and the formation of methane. Thawing under submarine conditions even stimulates AOM and thus mitigates the release of methane.}, language = {en} } @phdthesis{Littmann2024, author = {Littmann, Daniela-Christin}, title = {Large eddy simulations of the Arctic boundary layer around the MOSAiC drift track}, doi = {10.25932/publishup-62437}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-624374}, school = {Universit{\"a}t Potsdam}, pages = {xii, 110}, year = {2024}, abstract = {The icosahedral non-hydrostatic large eddy model (ICON-LEM) was applied around the drift track of the Multidisciplinary Observatory Study of the Arctic (MOSAiC) in 2019 and 2020. The model was set up with horizontal grid-scales between 100m and 800m on areas with radii of 17.5km and 140 km. At its lateral boundaries, the model was driven by analysis data from the German Weather Service (DWD), downscaled by ICON in limited area mode (ICON-LAM) with horizontal grid-scale of 3 km. The aim of this thesis was the investigation of the atmospheric boundary layer near the surface in the central Arctic during polar winter with a high-resolution mesoscale model. The default settings in ICON-LEM prevent the model from representing the exchange processes in the Arctic boundary layer in accordance to the MOSAiC observations. The implemented sea-ice scheme in ICON does not include a snow layer on sea-ice, which causes a too slow response of the sea-ice surface temperature to atmospheric changes. To allow the sea-ice surface to respond faster to changes in the atmosphere, the implemented sea-ice parameterization in ICON was extended with an adapted heat capacity term. The adapted sea-ice parameterization resulted in better agreement with the MOSAiC observations. However, the sea-ice surface temperature in the model is generally lower than observed due to biases in the downwelling long-wave radiation and the lack of complex surface structures, like leads. The large eddy resolving turbulence closure yielded a better representation of the lower boundary layer under strongly stable stratification than the non-eddy-resolving turbulence closure. Furthermore, the integration of leads into the sea-ice surface reduced the overestimation of the sensible heat flux for different weather conditions. The results of this work help to better understand boundary layer processes in the central Arctic during the polar night. High-resolving mesoscale simulations are able to represent temporally and spatially small interactions and help to further develop parameterizations also for the application in regional and global models.}, language = {en} } @phdthesis{Lantuit2008, author = {Lantuit, Hugues}, title = {The modification of arctic permafrost coastlines}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-19732}, school = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {The arctic region is undergoing the most rapid environmental change experienced on Earth, and the rate of change is expected to increase over the coming decades. Arctic coasts are particularly vulnerable because they lie at the interface between terrestrial systems dominated by permafrost and marine systems dominated by sea ice. An increased rise in sea level and degradation of sea-ice as predicted by the Intergovernmental Panel on Climate Change in its most recent report and as observed recently in the Arctic will likely result in greater rates of coastal retreat. An increase in coastal erosion would result in dramatic increases in the volume of sediment, organic carbon and contaminants to the Arctic Ocean. These in turn have the potential to create dramatic changes in the geochemistry and biodiversity of the nearshore zone and affect the Arctic Ocean carbon cycle. To calculate estimates of organic carbon input from coastal erosion to the Arctic Ocean, current methods rely on the length of the coastline in the form of non self-similar line datasets. This thesis however emphasizes that using shorelines drawn at different scales can induce changes in the amount of sediment released by 30\% in some cases. It proposes a substitute method of computations of erosion based on areas instead of lengths (i.e. buffers instead of shoreline lengths) which can be easily implemented at the circum-Arctic scale. Using this method, variations in quantities of eroded sediment are, on average, 70\% less affected by scale changes and are therefore a more reliable method of calculation. Current estimates of coastal erosion rates in the Arctic are scarce and long-term datasets are a handful, which complicates assessment and prognosis of coastal processes, in particular the occurrence of coastal hazards. This thesis aims at filling the gap by providing the first long-term dataset (1951-2006) of coastal erosion on the Bykovsky Peninsula, North-East Siberia. This study shows that the coastline, which is made of ice-rich permafrost, retreated at a mean annual rate of 0.59 m/yr between 1951and 2006. Rates were highly variable: 97.0 \% of the rates observed were less than 2 m/yr and 81.6\% were less than 1m/yr. However, no significant trend in erosion could be recorded despite the study of five temporal subperiods within 1951-2006. The juxtaposition of wind records could not help to explain erosion records either and this thesis emphasizes the local controls on erosion, in particular the cryostratigraphy, the proximity of the Peninsula to the Lena River Delta freshwater plume and the local topographical constraints on swell development. On ice-rich coastal stretches of the Artic, the interaction of coastal dynamics and permafrost leads to the occurrence of spectacular "C-shaped" depressions termed retrogressive thaw slumps which can reach lengths of up to 650 m. On Herschel Island and at King Point (Yukon Coastal Plain, northern Canada), topographical, sedimentological and biogeochemical surveys were conducted to investigate the present and past activity of these landforms. In particular, undisturbed tundra areas were compared with zones of former slump activity, now stabilized and re-vegetated. This thesis shows that stabilized areas are drier and less prone to plant growth than undisturbed areas and feature fundamentally different geotechnical properties. Radiocarbon dating and topographical surveys indicated until up to 300 BP a likely period of dramatic slump activity on Herschel Island, similar to the one currently observed, which led to the creation of these surfaces. This thesis hypothesizes the occurrence of a ~250 years cycle of slump activity on the Herschel Island shoreline based on the surveyed topography and cryostratigraphy and anticipates higher frequency of slump activity in the future. The variety of processes described in this thesis highlights the changing nature of the intensity and frequency of physical processes acting upon the arctic coast. It also challenges current perceptions of the threats to existing industry and community infrastructure in the Arctic. The increasing presence of humans on Artic coasts coupled with the expected development of shipping will drive an increase in economical and industrial activity on these coasts which remains to be addressed scientifically.}, language = {en} }