@article{ShahnejatBushehriAlluMehterovetal.2017, author = {Shahnejat-Bushehri, Sara and Allu, Annapurna Devi and Mehterov, Nikolay and Thirumalaikumar, Venkatesh P. and Alseekh, Saleh and Fernie, Alisdair R. and Mueller-Roeber, Bernd and Balazadeh, Salma}, title = {Arabidopsis NAC Transcription Factor JUNGBRUNNEN1 Exerts Conserved Control Over Gibberellin and Brassinosteroid Metabolism and Signaling Genes in Tomato}, series = {Frontiers in plant science}, volume = {8}, journal = {Frontiers in plant science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2017.00214}, pages = {13}, year = {2017}, abstract = {The Arabidopsis thaliana NAC transcription factor JUNGBRUNNEN1 (AtJUB1) regulates growth by directly repressing GA3ox1 and DWF4, two key genes involved in gibberellin (GA) and brassinosteroid (BR) biosynthesis, respectively, leading to GA and BR deficiency phenotypes. AtJUB1 also reduces the expression of PIF4, a bHLH transcription factor that positively controls cell elongation, while it stimulates the expression of DELLA genes, which are important repressors of growth. Here, we extend our previous findings by demonstrating that AtJUB1 induces similar GA and BR deficiency phenotypes and changes in gene expression when overexpressed in tomato (Solanum lycopersicum). Importantly, and in accordance with the growth phenotypes observed, AtJUB1 inhibits the expression of growth-supporting genes, namely the tomato orthologs of GA3ox1, DWF4 and PIF4, but activates the expression of DELLA orthologs, by directly binding to their promoters. Overexpression of AtJUB1 in tomato delays fruit ripening, which is accompanied by reduced expression of several ripeningrelated genes, and leads to an increase in the levels of various amino acids (mostly proline, beta-alanine, and phenylalanine), gamma-aminobutyric acid (GABA), and major organic acids including glutamic acid and aspartic acid. The fact that AtJUB1 exerts an inhibitory effect on the GA/BR biosynthesis and PIF4 genes but acts as a direct activator of DELLA genes in both, Arabidopsis and tomato, strongly supports the model that the molecular constituents of the JUNGBRUNNEN1 growth control module are considerably conserved across species.}, language = {en} } @phdthesis{Schauer2006, author = {Schauer, Nicolas}, title = {Quantitative trait loci (QTL) for metabolite accumulation and metabolic regulation : metabolite profiling of interspecific crosses of tomato}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7643}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {The advent of large-scale and high-throughput technologies has recently caused a shift in focus in contemporary biology from decades of reductionism towards a more systemic view. Alongside the availability of genome sequences the exploration of organisms utilizing such approach should give rise to a more comprehensive understanding of complex systems. Domestication and intensive breeding of crop plants has led to a parallel narrowing of their genetic basis. The potential to improve crops by conventional breeding using elite cultivars is therefore rather limited and molecular technologies, such as marker assisted selection (MAS) are currently being exploited to re-introduce allelic variance from wild species. Molecular breeding strategies have mostly focused on the introduction of yield or resistance related traits to date. However given that medical research has highlighted the importance of crop compositional quality in the human diet this research field is rapidly becoming more important. Chemical composition of biological tissues can be efficiently assessed by metabolite profiling techniques, which allow the multivariate detection of metabolites of a given biological sample. Here, a GC/MS metabolite profiling approach has been applied to investigate natural variation of tomatoes with respect to the chemical composition of their fruits. The establishment of a mass spectral and retention index (MSRI) library was a prerequisite for this work in order to establish a framework for the identification of metabolites from a complex mixture. As mass spectral and retention index information is highly important for the metabolomics community this library was made publicly available. Metabolite profiling of tomato wild species revealed large differences in the chemical composition, especially of amino and organic acids, as well as on the sugar composition and secondary metabolites. Intriguingly, the analysis of a set of S. pennellii introgression lines (IL) identified 889 quantitative trait loci of compositional quality and 326 yield-associated traits. These traits are characterized by increases/decreases not only of single metabolites but also of entire metabolic pathways, thus highlighting the potential of this approach in uncovering novel aspects of metabolic regulation. Finally the biosynthetic pathway of the phenylalanine-derived fruit volatiles phenylethanol and phenylacetaldehyde was elucidated via a combination of metabolic profiling of natural variation, stable isotope tracer experiments and reverse genetic experimentation.}, subject = {Tomate}, language = {en} } @misc{PerezCornagoCroweApplebyetal.2021, author = {Perez-Cornago, Aurora and Crowe, Francesca L. and Appleby, Paul N. and Bradbury, Kathryn E. and Wood, Angela M. and Jakobsen, Marianne Uhre and Johnson, Laura and Sacerdote, Carlotta and Steur, Marinka and Weiderpass, Elisabete and Wurtz, Anne Mette L. and Kuhn, Tilman and Katzke, Verena and Trichopoulou, Antonia and Karakatsani, Anna and La Vecchia, Carlo and Masala, Giovanna and Tumino, Rosario and Panico, Salvatore and Sluijs, Ivonne and Skeie, Guri and Imaz, Liher and Petrova, Dafina and Quiros, J. Ramon and Yohar, Sandra Milena Colorado and Jakszyn, Paula and Melander, Olle and Sonestedt, Emily and Andersson, Jonas and Wennberg, Maria and Aune, Dagfinn and Riboli, Elio and Schulze, Matthias Bernd and di Angelantonio, Emanuele and Wareham, Nicholas J. and Danesh, John and Forouhi, Nita G. and Butterworth, Adam S. and Key, Timothy J.}, title = {Plant foods, dietary fibre and risk of ischaemic heart disease in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-56034}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-560340}, pages = {13}, year = {2021}, abstract = {Background: Epidemiological evidence indicates that diets rich in plant foods are associated with a lower risk of ischaemic heart disease (IHD), but there is sparse information on fruit and vegetable subtypes and sources of dietary fibre. This study examined the associations of major plant foods, their subtypes and dietary fibre with risk of IHD in the European Prospective Investigation into Cancer and Nutrition (EPIC). Methods: We conducted a prospective analysis of 490 311 men and women without a history of myocardial infarction or stroke at recruitment (12.6 years of follow-up, n cases = 8504), in 10 European countries. Dietary intake was assessed using validated questionnaires, calibrated with 24-h recalls. Multivariable Cox regressions were used to estimate hazard ratios (HR) of IHD. Results: There was a lower risk of IHD with a higher intake of fruit and vegetables combined [HR per 200 g/day higher intake 0.94, 95\% confidence interval (CI): 0.90-0.99, P-trend = 0.009], and with total fruits (per 100 g/day 0.97, 0.95-1.00, P-trend = 0.021). There was no evidence for a reduced risk for fruit subtypes, except for bananas. Risk was lower with higher intakes of nuts and seeds (per 10 g/day 0.90, 0.82-0.98, Ptrend = 0.020), total fibre (per 10 g/day 0.91, 0.85-0.98, P-trend = 0.015), fruit and vegetable fibre (per 4 g/day 0.95, 0.91-0.99, P-trend = 0.022) and fruit fibre (per 2 g/day 0.97, 0.95-1.00, P-trend = 0.045). No associations were observed between vegetables, vegetables subtypes, legumes, cereals and IHD risk. Conclusions: In this large prospective study, we found some small inverse associations between plant foods and IHD risk, with fruit and vegetables combined being the most strongly inversely associated with risk. Whether these small associations are causal remains unclear.}, language = {en} } @article{PerezCornagoCroweApplebyetal.2021, author = {Perez-Cornago, Aurora and Crowe, Francesca L. and Appleby, Paul N. and Bradbury, Kathryn E. and Wood, Angela M. and Jakobsen, Marianne Uhre and Johnson, Laura and Sacerdote, Carlotta and Steur, Marinka and Weiderpass, Elisabete and Wurtz, Anne Mette L. and Kuhn, Tilman and Katzke, Verena and Trichopoulou, Antonia and Karakatsani, Anna and La Vecchia, Carlo and Masala, Giovanna and Tumino, Rosario and Panico, Salvatore and Sluijs, Ivonne and Skeie, Guri and Imaz, Liher and Petrova, Dafina and Quiros, J. Ramon and Yohar, Sandra Milena Colorado and Jakszyn, Paula and Melander, Olle and Sonestedt, Emily and Andersson, Jonas and Wennberg, Maria and Aune, Dagfinn and Riboli, Elio and Schulze, Matthias Bernd and di Angelantonio, Emanuele and Wareham, Nicholas J. and Danesh, John and Forouhi, Nita G. and Butterworth, Adam S. and Key, Timothy J.}, title = {Plant foods, dietary fibre and risk of ischaemic heart disease in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort}, series = {International journal of epidemiology}, volume = {50}, journal = {International journal of epidemiology}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0300-5771}, doi = {10.1093/ije/dyaa155}, pages = {212 -- 222}, year = {2021}, abstract = {Background: Epidemiological evidence indicates that diets rich in plant foods are associated with a lower risk of ischaemic heart disease (IHD), but there is sparse information on fruit and vegetable subtypes and sources of dietary fibre. This study examined the associations of major plant foods, their subtypes and dietary fibre with risk of IHD in the European Prospective Investigation into Cancer and Nutrition (EPIC). Methods: We conducted a prospective analysis of 490 311 men and women without a history of myocardial infarction or stroke at recruitment (12.6 years of follow-up, n cases = 8504), in 10 European countries. Dietary intake was assessed using validated questionnaires, calibrated with 24-h recalls. Multivariable Cox regressions were used to estimate hazard ratios (HR) of IHD. Results: There was a lower risk of IHD with a higher intake of fruit and vegetables combined [HR per 200 g/day higher intake 0.94, 95\% confidence interval (CI): 0.90-0.99, P-trend = 0.009], and with total fruits (per 100 g/day 0.97, 0.95-1.00, P-trend = 0.021). There was no evidence for a reduced risk for fruit subtypes, except for bananas. Risk was lower with higher intakes of nuts and seeds (per 10 g/day 0.90, 0.82-0.98, Ptrend = 0.020), total fibre (per 10 g/day 0.91, 0.85-0.98, P-trend = 0.015), fruit and vegetable fibre (per 4 g/day 0.95, 0.91-0.99, P-trend = 0.022) and fruit fibre (per 2 g/day 0.97, 0.95-1.00, P-trend = 0.045). No associations were observed between vegetables, vegetables subtypes, legumes, cereals and IHD risk. Conclusions: In this large prospective study, we found some small inverse associations between plant foods and IHD risk, with fruit and vegetables combined being the most strongly inversely associated with risk. Whether these small associations are causal remains unclear.}, language = {en} } @article{LissoAltmannMuessig2006, author = {Lisso, Janina and Altmann, Thomas and M{\"u}ssig, Carsten}, title = {Metabolic changes in fruits of the tomato d(x) mutant}, series = {Phytochemistry : an international journal of plant biochemistry}, volume = {67}, journal = {Phytochemistry : an international journal of plant biochemistry}, number = {20}, publisher = {Elsevier}, address = {Oxford}, issn = {0031-9422}, doi = {10.1016/j.phytochem.2006.07.008}, pages = {2232 -- 2238}, year = {2006}, language = {en} }