@phdthesis{Nikolaeva2013, author = {Nikolaeva, Elena}, title = {Landslide kinematics and interactions studied in central Georgia by using synthetic aperture radar interferometry, optical imagery and inverse modeling}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-70406}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {Landslides are one of the biggest natural hazards in Georgia, a mountainous country in the Caucasus. So far, no systematic monitoring and analysis of the dynamics of landslides in Georgia has been made. Especially as landslides are triggered by extrinsic processes, the analysis of landslides together with precipitation and earthquakes is challenging. In this thesis I describe the advantages and limits of remote sensing to detect and better understand the nature of landslide in Georgia. The thesis is written in a cumulative form, composing a general introduction, three manuscripts and a summary and outlook chapter. In the present work, I measure the surface displacement due to active landslides with different interferometric synthetic aperture radar (InSAR) methods. The slow landslides (several cm per year) are well detectable with two-pass interferometry. In same time, the extremely slow landslides (several mm per year) could be detected only with time series InSAR techniques. I exemplify the success of InSAR techniques by showing hitherto unknown landslides, located in the central part of Georgia. Both, the landslide extent and displacement rate is quantified. Further, to determine a possible depth and position of potential sliding planes, inverse models were developed. Inverse modeling searches for parameters of source which can create observed displacement distribution. I also empirically estimate the volume of the investigated landslide using displacement distributions as derived from InSAR combined with morphology from an aerial photography. I adapted a volume formula for our case, and also combined available seismicity and precipitation data to analyze potential triggering factors. A governing question was: What causes landslide acceleration as observed in the InSAR data? The investigated area (central Georgia) is seismically highly active. As an additional product of the InSAR data analysis, a deformation area associated with the 7th September Mw=6.0 earthquake was found. Evidences of surface ruptures directly associated with the earthquake could not be found in the field, however, during and after the earthquake new landslides were observed. The thesis highlights that deformation from InSAR may help to map area prone landslides triggering by earthquake, potentially providing a technique that is of relevance for country wide landslide monitoring, especially as new satellite sensors will emerge in the coming years.}, language = {en} } @phdthesis{Mester2023, author = {Mester, Benedikt}, title = {Modeling flood-induced human displacement risk under global change}, doi = {10.25932/publishup-60929}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-609293}, school = {Universit{\"a}t Potsdam}, pages = {XVI, 143}, year = {2023}, abstract = {Extreme flooding displaces an average of 12 million people every year. Marginalized populations in low-income countries are in particular at high risk, but also industrialized countries are susceptible to displacement and its inherent societal impacts. The risk of being displaced results from a complex interaction of flood hazard, population exposed in the floodplains, and socio-economic vulnerability. Ongoing global warming changes the intensity, frequency, and duration of flood hazards, undermining existing protection measures. Meanwhile, settlements in attractive yet hazardous flood-prone areas have led to a higher degree of population exposure. Finally, the vulnerability to displacement is altered by demographic and social change, shifting economic power, urbanization, and technological development. These risk components have been investigated intensively in the context of loss of life and economic damage, however, only little is known about the risk of displacement under global change. This thesis aims to improve our understanding of flood-induced displacement risk under global climate change and socio-economic change. This objective is tackled by addressing the following three research questions. First, by focusing on the choice of input data, how well can a global flood modeling chain reproduce flood hazards of historic events that lead to displacement? Second, what are the socio-economic characteristics that shape the vulnerability to displacement? Finally, to what degree has climate change potentially contributed to recent flood-induced displacement events? To answer the first question, a global flood modeling chain is evaluated by comparing simulated flood extent with satellite-derived inundation information for eight major flood events. A focus is set on the sensitivity to different combinations of the underlying climate reanalysis datasets and global hydrological models which serve as an input for the global hydraulic model. An evaluation scheme of performance scores shows that simulated flood extent is mostly overestimated without the consideration of flood protection and only for a few events dependent on the choice of global hydrological models. Results are more sensitive to the underlying climate forcing, with two datasets differing substantially from a third one. In contrast, the incorporation of flood protection standards results in an underestimation of flood extent, pointing to potential deficiencies in the protection level estimates or the flood frequency distribution within the modeling chain. Following the analysis of a physical flood hazard model, the socio-economic drivers of vulnerability to displacement are investigated in the next step. For this purpose, a satellite- based, global collection of flood footprints is linked with two disaster inventories to match societal impacts with the corresponding flood hazard. For each event the number of affected population, assets, and critical infrastructure, as well as socio-economic indicators are computed. The resulting datasets are made publicly available and contain 335 displacement events and 695 mortality/damage events. Based on this new data product, event-specific displacement vulnerabilities are determined and multiple (national) dependencies with the socio-economic predictors are derived. The results suggest that economic prosperity only partially shapes vulnerability to displacement; urbanization, infant mortality rate, the share of elderly, population density and critical infrastructure exhibit a stronger functional relationship, suggesting that higher levels of development are generally associated with lower vulnerability. Besides examining the contextual drivers of vulnerability, the role of climate change in the context of human displacement is also being explored. An impact attribution approach is applied on the example of Cyclone Idai and associated extreme coastal flooding in Mozambique. A combination of coastal flood modeling and satellite imagery is used to construct factual and counterfactual flood events. This storyline-type attribution method allows investigating the isolated or combined effects of sea level rise and the intensification of cyclone wind speeds on coastal flooding. The results suggest that displacement risk has increased by 3.1 to 3.5\% due to the total effects of climate change on coastal flooding, with the effects of increasing wind speed being the dominant factor. In conclusion, this thesis highlights the potentials and challenges of modeling flood- induced displacement risk. While this work explores the sensitivity of global flood modeling to the choice of input data, new questions arise on how to effectively improve the reproduction of flood return periods and the representation of protection levels. It is also demonstrated that disentangling displacement vulnerabilities is feasible, with the results providing useful information for risk assessments, effective humanitarian aid, and disaster relief. The impact attribution study is a first step in assessing the effects of global warming on displacement risk, leading to new research challenges, e.g., coupling fluvial and coastal flood models or the attribution of other hazard types and displacement events. This thesis is one of the first to address flood-induced displacement risk from a global perspective. The findings motivate for further development of the global flood modeling chain to improve our understanding of displacement vulnerability and the effects of global warming.}, language = {en} }