@phdthesis{Kartal2011, author = {Kartal, {\"O}nder}, title = {The role of interfacial and 'entropic' enzymes in transitory starch degradation : a mathematical modeling approach}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-53947}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Plants and some unicellular algae store carbon in the form of transitory starch on a diurnal basis. The turnover of this glucose polymer is tightly regulated and timely synthesis as well as mobilization is essential to provide energy for heterotrophic growth. Especially for starch degradation, novel enzymes and mechanisms have been proposed recently. However, the catalytic properties of these enzymes and their coordination with metabolic regulation are still to be discovered. This thesis develops theoretical methods in order to interpret and analyze enzymes and their role in starch degradation. In the first part, a novel description of interfacial enzyme catalysis is proposed. Since the initial steps of starch degradation involve reactions at the starch-stroma interface it is necessary to have a framework which allows the derivation of interfacial enzyme rate laws. A cornerstone of the method is the introduction of the available area function - a concept from surface physics - to describe the adsorption step in the catalytic cycle. The method is applied to derive rate laws for two hydrolases, the Beta-amylase (BAM3) and the Isoamylase (DBE/ISA3), as well as to the Glucan, water dikinase (GWD) and a Phosphoglucan phosphatase (DSP/SEX4). The second part uses the interfacial rate laws to formulate a kinetic model of starch degradation. It aims at reproducing the stimulatory effect of reversible phosphorylation by GWD and DSP on the breakdown of the granule. The model can describe the dynamics of interfacial properties during degradation and suggests that interfacial amylopectin side-chains undergo spontaneous helix-coil transitions. Reversible phosphorylation has a synergistic effect on glucan release especially in the early phase dropping off during degradation. Based on the model, the hypothesis is formulated that interfacial phosphorylation is important for the rapid switch from starch synthesis to starch degradation. The third part takes a broader perspective on carbohydrate-active enzymes (CAZymes) but is motivated by the organization of the downstream pathway of starch breakdown. This comprises Alpha-1,4-glucanotransferases (DPE1 and DPE2) and Alpha-glucan-phosphorylases (Pho or PHS) both in the stroma and in the cytosol. CAZymes accept many different substrates and catalyze numerous reactions and therefore cannot be characterized in classical enzymological terms. A concise characterization is provided by conceptually linking statistical thermodynamics and polymer biochemistry. Each reactant is interpreted as an energy level, transitions between which are constrained by the enzymatic mechanisms. Combinations of in vitro assays of polymer-active CAZymes essential for carbon metabolism in plants confirmed the dominance of entropic gradients. The principle of entropy maximization provides a generalization of the equilibrium constant. Stochastic simulations confirm the results and suggest that randomization of metabolites in the cytosolic pool of soluble heteroglycans (SHG) may contribute to a robust integration of fluctuating carbon fluxes coming from chloroplasts.}, language = {en} } @phdthesis{Bringmann2012, author = {Bringmann, Martin}, title = {Identification of novel components that connect cellulose synthases to the cytoskeleton}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-61478}, school = {Universit{\"a}t Potsdam}, year = {2012}, abstract = {Cellulose is the most abundant biopolymer on earth and the main load-bearing structure in plant cell walls. Cellulose microfibrils are laid down in a tight parallel array, surrounding plant cells like a corset. Orientation of microfibrils determines the direction of growth by directing turgor pressure to points of expansion (Somerville et al., 2004). Hence, cellulose deficient mutants usually show cell and organ swelling due to disturbed anisotropic cell expansion (reviewed in Endler and Persson, 2011). How do cellulose microfibrils gain their parallel orientation? First experiments in the 1960s suggested, that cortical microtubules aid the cellulose synthases on their way around the cell (Green, 1962; Ledbetter and Porter, 1963). This was proofed in 2006 through life cell imaging (Paredez et al., 2006). However, how this guidance was facilitated, remained unknown. Through a combinatory approach, including forward and reverse genetics together with advanced co-expression analysis, we identified pom2 as a cellulose deficient mutant. Map- based cloning revealed that the gene locus of POM2 corresponded to CELLULOSE SYNTHASE INTERACTING 1 (CSI1). Intriguingly, we previously found the CSI1 protein to interact with the putative cytosolic part of the primary cellulose synthases in a yeast-two-hybrid screen (Gu et al., 2010). Exhaustive cell biological analysis of the POM2/CSI1 protein allowed to determine its cellular function. Using spinning disc confocal microscopy, we could show that in the absence of POM2/CSI1, cellulose synthase complexes lose their microtubule-dependent trajectories in the plasma membrane. The loss of POM2/CSI1, however does not influence microtubule- dependent delivery of cellulose synthases (Bringmann et al., 2012). Consequently, POM2/CSI1 acts as a bridging protein between active cellulose synthases and cortical microtubules. This thesis summarizes three publications of the author, regarding the identification of proteins that connect cellulose synthases to the cytoskeleton. This involves the development of bioinformatics tools allowing candidate gene prediction through co-expression studies (Mutwil et al., 2009), identification of candidate genes through interaction studies (Gu et al., 2010), and determination of the cellular function of the candidate gene (Bringmann et al., 2012).}, language = {en} }