@phdthesis{Tang2022, author = {Tang, Jo Sing Julia}, title = {Biofunctional polymers for medical applications}, doi = {10.25932/publishup-56363}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-563639}, school = {Universit{\"a}t Potsdam}, pages = {III, 150, V}, year = {2022}, abstract = {Carbohydrates are found in every living organism, where they are responsible for numerous, essential biological functions and processes. Synthetic polymers with pendant saccharides, called glycopolymers, mimic natural glycoconjugates in their special properties and functions. Employing such biomimetics furthers the understanding and controlling of biological processes. Hence, glycopolymers are valuable and interesting for applications in the medical and biological field. However, the synthesis of carbohydrate-based materials can be very challenging. In this thesis, the synthesis of biofunctional glycopolymers is presented, with the focus on aqueous-based, protecting group free and short synthesis routes to further advance in the field of glycopolymer synthesis. A practical and versatile precursor for glycopolymers are glycosylamines. To maintain biofunctionality of the saccharides after their amination, regioselective functionalization was performed. This frequently performed synthesis was optimized for different sugars. The optimization was facilitated using a design of experiment (DoE) approach to enable a reduced number of necessary experiments and efficient procedure. Here, the utility of using DoE for optimizing the synthesis of glycosylamines is discussed. The glycosylamines were converted to glycomonomers which were then polymerized to yield biofunctional glycopolymers. Here, the glycopolymers were aimed to be applicable as layer-by-layer (LbL) thin film coatings for drug delivery systems. To enable the LbL technique, complimentary glycopolymer electrolytes were synthesized by polymerization of the glycomonomers and subsequent modification or by post-polymerization modification. For drug delivery, liposomes were embedded into the glycopolymer coating as potential cargo carriers. The stability as well as the integrity of the glycopolymer layers and liposomes were investigated at physiological pH range. Different glycopolymers were also synthesized to be applicable as anti-adhesion therapeutics by providing advanced architectures with multivalent presentations of saccharides, which can inhibit the binding of pathogene lectins. Here, the synthesis of glycopolymer hydrogel particles based on biocompatible poly(N-isopropylacrylamide) (NiPAm) was established using the free-radical precipitation polymerization technique. The influence of synthesis parameters on the sugar content in the gels and on the hydrogel morphology is discussed. The accessibility of the saccharides to model lectins and their enhanced, multivalent interaction were investigated. At the end of this work, the synthesis strategies for the glycopolymers are generally discussed as well as their potential application in medicine.}, language = {en} } @phdthesis{SchulteOsseili2019, author = {Schulte-Osseili, Christine}, title = {Vom Monomer zum Glykopolymer}, doi = {10.25932/publishup-43216}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-432169}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 149}, year = {2019}, abstract = {Glykopolymere sind synthetische und nat{\"u}rlich vorkommende Polymere, die eine Glykaneinheit in der Seitenkette des Polymers tragen. Glykane sind durch die Glykan-Protein-Wechselwirkung verantwortlich f{\"u}r viele biologische Prozesse. Die Beteiligung der Glykanen in diesen biologischen Prozessen erm{\"o}glicht das Imitieren und Analysieren der Wechselwirkungen durch geeignete Modellverbindungen, z.B. der Glykopolymere. Dieses System der Glykan-Protein-Wechselwirkung soll durch die Glykopolymere untersucht und studiert werden, um die spezifische und selektive Bindung der Proteine an die Glykopolymere nachzuweisen. Die Proteine, die in der Lage sind, Kohlenhydratstrukturen selektiv zu binden, werden Lektine genannt. In dieser Dissertationsarbeit wurden verschiedene Glykopolymere synthetisiert. Dabei sollte auf einen effizienten und kosteng{\"u}nstigen Syntheseweg geachtet werden. Verschiedene Glykopolymere wurden durch funktionalisierte Monomere mit verschiedenen Zuckern, wie z.B. Mannose, Laktose, Galaktose oder N-Acetyl-Glukosamin als funktionelle Gruppe, hergestellt. Aus diesen funktionalisierten Glykomonomeren wurden {\"u}ber ATRP und RAFT-Polymerisation Glykopolymere synthetisiert. Die erhaltenen Glykopolymere wurden in Diblockcopolymeren als hydrophiler Block angewendet und die Selbstassemblierung in w{\"a}ssriger L{\"o}sung untersucht. Die Polymere formten in w{\"a}ssriger L{\"o}sung Mizellen, bei denen der Zuckerblock an der Oberfl{\"a}che der Mizellen sitzt. Die Mizellen wurden mit einem hydrophoben Fluoreszenzfarbstoff beladen, wodurch die CMC der Mizellenbildung bestimmt werden konnte. Außerdem wurden die Glykopolymere als Oberfl{\"a}chenbeschichtung {\"u}ber „Grafting from" mit SI-ATRP oder {\"u}ber „Grafting to" auf verschiedene Oberfl{\"a}chen gebunden. Durch die glykopolymerbschichteten Oberfl{\"a}chen konnte die Glykan Protein Wechselwirkung {\"u}ber spektroskopische Messmethoden, wie SPR- und Mikroring Resonatoren untersucht werden. Hierbei wurde die spezifische und selektive Bindung der Lektine an die Glykopolymere nachgewiesen und die Bindungsst{\"a}rke untersucht. Die synthetisierten Glykopolymere k{\"o}nnten durch Austausch der Glykaneinheit f{\"u}r andere Lektine adressierbar werden und damit ein weites Feld an anderen Proteinen erschließen. Die biovertr{\"a}glichen Glykopolymere w{\"a}ren alternativen f{\"u}r den Einsatz in biologischen Prozessen als Transporter von Medikamenten oder Farbstoffe in den K{\"o}rper. Außerdem k{\"o}nnten die funktionalisierten Oberfl{\"a}chen in der Diagnostik zum Erkennen von Lektinen eingesetzt werden. Die Glykane, die keine selektive und spezifische Bindung zu Proteinen eingehen, k{\"o}nnten als antiadsorptive Oberfl{\"a}chenbeschichtung z.B. in der Zellbiologie eingesetzt werden.}, language = {de} }