@phdthesis{Voroshnin2023, author = {Voroshnin, Vladimir}, title = {Control over spin and electronic structure of MoSâ‚‚ monolayer via interactions with substrates}, doi = {10.25932/publishup-59070}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-590709}, school = {Universit{\"a}t Potsdam}, pages = {viii, 125}, year = {2023}, abstract = {The molybdenum disulfide (MoS2) monolayer is a semiconductor with a direct bandgap while it is a robust and affordable material. It is a candidate for applications in optoelectronics and field-effect transistors. MoS2 features a strong spin-orbit coupling which makes its spin structure promising for acquiring the Kane-Mele topological concept with corresponding applications in spintronics and valleytronics. From the optical point of view, the MoS2 monolayer features two valleys in the regions of K and K' points. These valleys are differentiated by opposite spins and a related valley-selective circular dichroism. In this study we aim to manipulate the MoS2 monolayer spin structure in the vicinity of the K and K' points to explore the possibility of getting control over the optical and electronic properties. We focus on two different substrates to demonstrate two distinct routes: a gold substrate to introduce a Rashba effect and a graphene/cobalt substrate to introduce a magnetic proximity effect in MoS2. The Rashba effect is proportional to the out-of-plane projection of the electric field gradient. Such a strong change of the electric field occurs at the surfaces of a high atomic number materials and effectively influence conduction electrons as an in-plane magnetic field. A molybdenum and a sulfur are relatively light atoms, thus, similar to many other 2D materials, intrinsic Rashba effect in MoS2 monolayer is vanishing small. However, proximity of a high atomic number substrate may enhance Rashba effect in a 2D material as it was demonstrated for graphene previously. Another way to modify the spin structure is to apply an external magnetic field of high magnitude (several Tesla), and cause a Zeeman splitting, the conduction electrons. However, a similar effect can be reached via magnetic proximity which allows us to reduce external magnetic fields significantly or even to zero. The graphene on cobalt interface is ferromagnetic and stable for MoS2 monolayer synthesis. Cobalt is not the strongest magnet; therefore, stronger magnets may lead to more significant results. Nowadays most experimental studies on the dichalcogenides (MoS2 included) are performed on encapsulated heterostructures that are produced by mechanical exfoliation. While mechanical exfoliation (or scotch-tape method) allows to produce a huge variety of structures, the shape and the size of the samples as well as distance between layers in heterostructures are impossible to control reproducibly. In our study we used molecular beam epitaxy (MBE) methods to synthesise both MoS2/Au(111) and MoS2/graphene/Co systems. We chose to use MBE, as it is a scalable and reproducible approach, so later industry may adapt it and take over. We used graphene/cobalt instead of just a cobalt substrate because direct contact of MoS2\ monolayer and a metallic substrate may lead to photoluminescence (PL) quenching in the metallic substrate. Graphene and hexagonal boron nitride monolayer are considered building blocks of a new generation of electronics also commonly used as encapsulating materials for PL studies. Moreover graphene is proved to be a suitable substrate for the MBE growth of transitional metal dichalcogenides (TMDCs). In chapter 1, we start with an introduction to TMDCs. Then we focus on MoS2 monolayer state of the art research in the fields of application scenario; synthesis approaches; electronic, spin, and optical properties; and interactions with magnetic fields and magnetic materials. We briefly touch the basics of magnetism in solids and move on to discuss various magnetic exchange interactions and magnetic proximity effect. Then we describe MoS2 optical properties in more detail. We start from basic exciton physics and its manifestation in the MoS2 monolayer. We consider optical selection rules in the MoS2 monolayer and such properties as chirality, spin-valley locking, and coexistence of bright and dark excitons. Chapter 2 contains an overview of the employed surface science methods: angle-integrated, angle-resolved, and spin-resolved photoemission; low energy electron diffraction and scanning tunneling microscopy. In chapter 3, we describe MoS2 monolayer synthesis details for two substrates: gold monocrystal with (111) surface and graphene on cobalt thin film with Co(111) surface orientation. The synthesis descriptions are followed by a detailed characterisation of the obtained structures: fingerprints of MoS2 monolayer formation; MoS2 monolayer symmetry and its relation to the substrate below; characterisation of MoS2 monolayer coverage, domain distribution, sizes and shapes, and moire structures. In chapter~4, we start our discussion with MoS2/Au(111) electronic and spin structure. Combining density functional theory computations (DFT) and spin-resolved photoemission studies, we demonstrate that the MoS2 monolayer band structure features an in-plane Rashba spin splitting. This confirms the possibility of MoS2 monolayer spin structure manipulation via a substrate. Then we investigate the influence of a magnetic proximity in the MoS2/graphene/Co system on the MoS2 monolayer spin structure. We focus our investigation on MoS2 high symmetry points: G and K. First, using spin-resolved measurements, we confirm that electronic states are spin-split at the G point via a magnetic proximity effect. Second, combining spin-resolved measurements and DFT computations for MoS2 monolayer in the K point region, we demonstrate the appearance of a small in-plane spin polarisation in the valence band top and predict a full in-plane spin polarisation for the conduction band bottom. We move forward discussing how these findings are related to the MoS2 monolayer optical properties, in particular the possibility of dark exciton observation. Additionally, we speculate on the control of the MoS2 valley energy via magnetic proximity from cobalt. As graphene is spatially buffering the MoS2 monolayer from the Co thin film, we speculate on the role of graphene in the magnetic proximity transfer by replacing graphene with vacuum and other 2D materials in our computations. We finish our discussion by investigating the K-doped MoS2/graphene/Co system and the influence of this doping on the electronic and spin structure as well as on the magnetic proximity effect. In summary, using a scalable MBE approach we synthesised MoS2/Au(111) and MoS2/graphene/Co systems. We found a Rashba effect taking place in MoS2/Au(111) which proves that the MoS2 monolayer in-plane spin structure can be modified. In MoS2/graphene/Co the in-plane magnetic proximity effect indeed takes place which rises the possibility of fine tuning the MoS2 optical properties via manipulation of the the substrate magnetisation.}, language = {en} }