@phdthesis{Tirok2008, author = {Tirok, Katrin}, title = {Predator-prey dynamics under the influence of exogenous and endogenous regulation : a data-based modeling study on spring plankton with respect to climate change}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-24528}, school = {Universit{\"a}t Potsdam}, year = {2008}, abstract = {Understanding the interactions of predators and their prey and their responses to environmental changes is one of the striking features of ecological research. In this thesis, spring dynamics of phytoplankton and its consumers, zooplankton, were considered in dependence on the environmental conditions in a deep lake (Lake Constance) and a shallow marine water (mesocosms from Kiel Bight), using descriptive statistics, multiple regression models, and process-oriented dynamic simulation models. The development of the spring phytoplankton bloom, representing a dominant feature in the plankton dynamics in temperate and cold oceans and lakes, may depend on temperature, light, and mixing intensity, and the success of over-wintering phyto- and zooplankton. These factors are often correlated in the field. Unexpectedly, irradiance often dominated algal net growth rather than vertical mixing even in deep Lake Constance. Algal net losses from the euphotic layer to larger depth were induced by vertical mixing, but were compensated by the input from larger depth when algae were uniformly distributed over the water column. Dynamics of small, fast-growing algae were well predicted by abiotic variables, such as surface irradiance, vertical mixing intensity, and temperature. A simulation model additionally revealed that even in late winter, grazing may represent an important loss factor of phytoplankton during calm periods when losses due to mixing are small. The importance of losses by mixing and grazing changed rapidly as it depended on the variable mixing intensity. Higher temperature, lower global irradiance and enhanced mixing generated lower algal biomass and primary production in the dynamic simulation model. This suggests that potential consequences of climate change may partly counteract each other. The negative effect of higher temperatures on phytoplankton biomass was due to enhanced temperature-sensitive grazing losses. Comparing the results from deep Lake Constance to those of the shallow mesocosm experiments and simulations, confirmed the strong direct effect of light in contrast to temperature, and the importance of grazing already in early spring as soon as moderate algal biomasses developed. In Lake Constance, ciliates dominated the herbivorous zooplankton in spring. The start of ciliate net growth in spring was closely linked to that of edible algae, chlorophyll a and the vertical mixing intensity but independent of water temperature. The duration of ciliate dominance in spring was largely controlled by the highly variable onset of the phytoplankton bloom, and little by the less variable termination of the ciliate bloom by grazing of meta-zooplankton. During years with an extended spring bloom of algae and ciliates, they coexisted at relatively high biomasses over 15-30 generations, and internally forced species shifts were observed in both communities. Interception feeders alternated with filter feeders, and cryptomonads with non-cryptomonads in their relative importance. These dynamics were not captured by classical 1-predator-1-prey models which consistently predict pronounced predator-prey cycles or equilibria with either the predator or the prey dominating or suppressed. A multi-species predator-prey model with predator species differing in their food selectivity, and prey species in their edibility reproduced the observed patterns. Food-selectivity and edibility were related to the feeding and growth characteristics of the species, which represented ecological trade-offs. For example, the prey species with the highest edibility also had the highest maximum growth rate. Data and model revealed endogenous driven ongoing species alternations, which yielded a higher variability in species-specific biomasses than in total predator and prey biomass. This holds for a broad parameter space as long as the species differ functionally. A more sophisticated model approach enabled the simulation of a continuum of different functional types and adaptability of predator and prey communities to altered environmental conditions, and the maintenance of a rather low model complexity, i.e., low number of equations and free parameters. The community compositions were described by mean functional traits --- prey edibility and predator food-selectivity --- and their variances. The latter represent the functional diversity of the communities and thus, the potential for adaptation. Oscillations in the mean community trait values indicated species shifts. The community traits were related to growth and grazing characteristics representing similar trade-offs as in the multi-species model. The model reproduced the observed patterns, when nonlinear relationships between edibility and capacity, and edibility and food availability for the predator were chosen. A constant minimum amount of variance represented ongoing species invasions and thus, preserved a diversity which allows adaptation on a realistic time-span.}, language = {en} } @phdthesis{Teckentrup2019, author = {Teckentrup, Lisa}, title = {Understanding predator-prey interactions}, doi = {10.25932/publishup-43162}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-431624}, school = {Universit{\"a}t Potsdam}, pages = {ix, 133}, year = {2019}, abstract = {Predators can have numerical and behavioral effects on prey animals. While numerical effects are well explored, the impact of behavioral effects is unclear. Furthermore, behavioral effects are generally either analyzed with a focus on single individuals or with a focus on consequences for other trophic levels. Thereby, the impact of fear on the level of prey communities is overlooked, despite potential consequences for conservation and nature management. In order to improve our understanding of predator-prey interactions, an assessment of the consequences of fear in shaping prey community structures is crucial. In this thesis, I evaluated how fear alters prey space use, community structure and composition, focusing on terrestrial mammals. By integrating landscapes of fear in an existing individual-based and spatially-explicit model, I simulated community assembly of prey animals via individual home range formation. The model comprises multiple hierarchical levels from individual home range behavior to patterns of prey community structure and composition. The mechanistic approach of the model allowed for the identification of underlying mechanism driving prey community responses under fear. My results show that fear modified prey space use and community patterns. Under fear, prey animals shifted their home ranges towards safer areas of the landscape. Furthermore, fear decreased the total biomass and the diversity of the prey community and reinforced shifts in community composition towards smaller animals. These effects could be mediated by an increasing availability of refuges in the landscape. Under landscape changes, such as habitat loss and fragmentation, fear intensified negative effects on prey communities. Prey communities in risky environments were subject to a non-proportional diversity loss of up to 30\% if fear was taken into account. Regarding habitat properties, I found that well-connected, large safe patches can reduce the negative consequences of habitat loss and fragmentation on prey communities. Including variation in risk perception between prey animals had consequences on prey space use. Animals with a high risk perception predominantly used safe areas of the landscape, while animals with a low risk perception preferred areas with a high food availability. On the community level, prey diversity was higher in heterogeneous landscapes of fear if individuals varied in their risk perception compared to scenarios in which all individuals had the same risk perception. Overall, my findings give a first, comprehensive assessment of the role of fear in shaping prey communities. The linkage between individual home range behavior and patterns at the community level allows for a mechanistic understanding of the underlying processes. My results underline the importance of the structure of the landscape of fear as a key driver of prey community responses, especially if the habitat is threatened by landscape changes. Furthermore, I show that individual landscapes of fear can improve our understanding of the consequences of trait variation on community structures. Regarding conservation and nature management, my results support calls for modern conservation approaches that go beyond single species and address the protection of biotic interactions.}, language = {en} } @phdthesis{Stark2021, author = {Stark, Markus}, title = {Implications of local and regional processes on the stability of metacommunities in diverse ecosystems}, doi = {10.25932/publishup-52639}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-526399}, school = {Universit{\"a}t Potsdam}, pages = {x, 167}, year = {2021}, abstract = {Anthropogenic activities such as continuous landscape changes threaten biodiversity at both local and regional scales. Metacommunity models attempt to combine these two scales and continuously contribute to a better mechanistic understanding of how spatial processes and constraints, such as fragmentation, affect biodiversity. There is a strong consensus that such structural changes of the landscape tend to negatively effect the stability of metacommunities. However, in particular the interplay of complex trophic communities and landscape structure is not yet fully understood. In this present dissertation, a metacommunity approach is used based on a dynamic and spatially explicit model that integrates population dynamics at the local scale and dispersal dynamics at the regional scale. This approach allows the assessment of complex spatial landscape components such as habitat clustering on complex species communities, as well as the analysis of population dynamics of a single species. In addition to the impact of a fixed landscape structure, periodic environmental disturbances are also considered, where a periodical change of habitat availability, temporally alters landscape structure, such as the seasonal drying of a water body. On the local scale, the model results suggest that large-bodied animal species, such as predator species at high trophic positions, are more prone to extinction in a state of large patch isolation than smaller species at lower trophic levels. Increased metabolic losses for species with a lower body mass lead to increased energy limitation for species on higher trophic levels and serves as an explanation for a predominant loss of these species. This effect is particularly pronounced for food webs, where species are more sensitive to increased metabolic losses through dispersal and a change in landscape structure. In addition to the impact of species composition in a food web for diversity, the strength of local foraging interactions likewise affect the synchronization of population dynamics. A reduced predation pressure leads to more asynchronous population dynamics, beneficial for the stability of population dynamics as it reduces the risk of correlated extinction events among habitats. On the regional scale, two landscape aspects, which are the mean patch isolation and the formation of local clusters of two patches, promote an increase in \$\beta\$-diversity. Yet, the individual composition and robustness of the local species community equally explain a large proportion of the observed diversity patterns. A combination of periodic environmental disturbance and patch isolation has a particular impact on population dynamics of a species. While the periodic disturbance has a synchronizing effect, it can even superimpose emerging asynchronous dynamics in a state of large patch isolation and unifies trends in synchronization between different species communities. In summary, the findings underline a large local impact of species composition and interactions on local diversity patterns of a metacommunity. In comparison, landscape structures such as fragmentation have a negligible effect on local diversity patterns, but increase their impact for regional diversity patterns. In contrast, at the level of population dynamics, regional characteristics such as periodic environmental disturbance and patch isolation have a particularly strong impact and contribute substantially to the understanding of the stability of population dynamics in a metacommunity. These studies demonstrate once again the complexity of our ecosystems and the need for further analysis for a better understanding of our surrounding environment and more targeted conservation of biodiversity.}, language = {en} } @phdthesis{Schwager2005, author = {Schwager, Monika}, title = {Climate change, variable colony sizes and temporal autocorrelation : consequences of living in changing environments}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5744}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Natural and human induced environmental changes affect populations at different time scales. If they occur in a spatial heterogeneous way, they cause spatial variation in abundance. In this thesis I addressed three topics, all related to the question, how environmental changes influence population dynamics. In the first part, I analysed the effect of positive temporal autocorrelation in environmental noise on the extinction risk of a population, using a simple population model. The effect of autocorrelation depended on the magnitude of the effect of single catastrophic events of bad environmental conditions on a population. If a population was threatened by extinction only, when bad conditions occurred repeatedly, positive autocorrelation increased extinction risk. If a population could become extinct, even if bad conditions occurred only once, positive autocorrelation decreased extinction risk. These opposing effects could be explained by two features of an autocorrelated time series. On the one hand, positive autocorrelation increased the probability of series of bad environmental conditions, implying a negative effect on populations. On the other hand, aggregation of bad years also implied longer periods with relatively good conditions. Therefore, for a given time period, the overall probability of occurrence of at least one extremely bad year was reduced in autocorrelated noise. This can imply a positive effect on populations. The results could solve a contradiction in the literature, where opposing effects of autocorrelated noise were found in very similar population models. In the second part, I compared two approaches, which are commonly used for predicting effects of climate change on future abundance and distribution of species: a "space for time approach", where predictions are based on the geographic pattern of current abundance in relation to climate, and a "population modelling approach" which is based on correlations between demographic parameters and the inter-annual variation of climate. In this case study, I compared the two approaches for predicting the effect of a shift in mean precipitation on a population of the sociable weaver Philetairus socius, a common colonially living passerine bird of semiarid savannahs of southern Africa. In the space for time approach, I compared abundance and population structure of the sociable weaver in two areas with highly different mean annual precipitation. The analysis showed no difference between the two populations. This result, as well as the wide distribution range of the species, would lead to the prediction of no sensitive response of the species to a slight shift in mean precipitation. In contrast, the population modelling approach, based on a correlation between reproductive success and rainfall, predicted a sensitive response in most model types. The inconsistency of predictions was confirmed in a cross-validation between the two approaches. I concluded that the inconsistency was caused, because the two approaches reflect different time scales. On a short time scale, the population may respond sensitively to rainfall. However, on a long time scale, or in a regional comparison, the response may be compensated or buffered by a variety of mechanisms. These may include behavioural or life history adaptations, shifts in the interactions with other species, or differences in the physical environment. The study implies that understanding, how such mechanisms work, and at what time scale they would follow climate change, is a crucial precondition for predicting ecological consequences of climate change. In the third part of the thesis, I tested why colony sizes of the sociable weaver are highly variable. The high variation of colony sizes is surprising, as in studies on coloniality it is often assumed that an optimal colony size exists, in which individual bird fitness is maximized. Following this assumption, the pattern of bird dispersal should keep colony sizes near an optimum. However, I showed by analysing data on reproductive success and survival that for the sociable weaver fitness in relation to colony size did not follow an optimum curve. Instead, positive and negative effects of living in large colonies overlaid each other in a way that fitness was generally close to one, and density dependence was low. I showed in a population model, which included an evolutionary optimisation process of dispersal that this specific shape of the fitness function could lead to a dispersal strategy, where the variation of colony sizes was maintained.}, subject = {Populationsbiologie}, language = {en} } @phdthesis{Milles2022, author = {Milles, Alexander}, title = {Sources and consequences of intraspecific trait variation in movement behaviour}, doi = {10.25932/publishup-56501}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-565011}, school = {Universit{\"a}t Potsdam}, pages = {xvi, 225}, year = {2022}, abstract = {Variation in traits permeates and affects all levels of biological organisation, from within individuals to between species. Yet, intraspecific trait variation (ITV) is not sufficiently represented in many ecological theories. Instead, species averages are often assumed. Especially ITV in behaviour has only recently attracted more attention as its pervasiveness and magnitude became evident. The surge in interest in ITV in behaviour was accompanied by a methodological and technological leap in the field of movement ecology. Many aspects of behaviour become visible via movement, allowing us to observe inter-individual differences in fundamental processes such as foraging, mate searching, predation or migration. ITV in movement behaviour may result from within-individual variability and consistent, repeatable among-individual differences. Yet, questions on why such among-individual differences occur in the first place and how they are integrated with life-history have remained open. Furthermore, consequences of ITV, especially of among-individual differences in movement behaviour, on populations and species communities are not sufficiently understood. In my thesis, I approach timely questions on the sources and consequences of ITV, particularly, in movement behaviour. After outlining fundamental concepts and the current state of knowledge, I approach these questions by using agent-based models to integrate concepts from behavioural and movement ecology and to develop novel perspectives. Modern coexistence theory is a central pillar of community ecology, yet, insufficiently considers ITV in behaviour. In chapter 2, I model a competitive two-species system of ground-dwelling, central-place foragers to investigate the consequences of among-individual differences in movement behaviour on species coexistence. I show that the simulated among-individual differences, which matched with empirical data, reduce fitness differences betweem species, i.e. provide an equalising coexistence mechanism. Furthermore, I explain this result mechanistically and, thus, resolve an apparent ambiguity of the consequences of ITV on species coexistence described in previous studies. In chapter 3, I turn the focus to sources of among-individual differences in movement behaviour and their potential integration with life-history. The pace-of-life syndrome (POLS) theory predicts that the covariation between among-individual differences in behaviour and life-history is mediated by a trade-off between early and late reproduction. This theory has generated attention but is also currently scrutinised. In chapter 3, I present a model which supports a recent conceptual development that suggests fluctuating density-dependent selection as a cause of the POLS. Yet, I also identified processes that may alter the association between movement behaviour and life-history across levels of biological organization. ITV can buffer populations, i.e. reduce their extinction risk. For instance, among-individual differences can mediate portfolio effects or increase evolvability and, thereby, facilitate rapid evolution which can alleviate extinction risk. In chapter 4, I review ITV, environmental heterogeneity, and density-dependent processes which constitute local buffer mechanisms. In the light of habitat isolation, which reduces connectivity between populations, local buffer mechanisms may become more relevant compared to dispersal-related regional buffer mechanisms. In this chapter, I argue that capacities, latencies, and interactions of local buffer mechanisms should motivate more process-based and holistic integration of local buffer mechanisms in theoretical and empirical studies. Recent perspectives propose to apply principles from movement and community ecology to study filamentous fungi. It is an open question whether and how the arrangement and geometry of microstructures select for certain movement traits, and, thus, facilitate coexistence-stabilising niche partitioning. As a coauthor of chapter 5, I developed an agent-based model of hyphal tips navigating in soil-like microstructures along a gradient of soil porosity. By measuring network properties, we identified changes in the optimal movement behaviours along the gradient. Our findings suggest that the soil architecture facilitates niche partitioning. The core chapters are framed by a general introduction and discussion. In the general introduction, I outline fundamental concepts of movement ecology and describe theory and open questions on sources and consequences of ITV in movement behaviour. In the general discussion, I consolidate the findings of the core chapters and critically discuss their respective value and, if applicable, their impact. Furthermore, I emphasise promising avenues for further research.}, language = {en} } @phdthesis{Martin2013, author = {Martin, Benjamin}, title = {Linking individual-based models and dynamic energy budget theory : lessons for ecology and ecotoxicology}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-67001}, school = {Universit{\"a}t Potsdam}, year = {2013}, abstract = {In the context of ecological risk assessment of chemicals, individual-based population models hold great potential to increase the ecological realism of current regulatory risk assessment procedures. However, developing and parameterizing such models is time-consuming and often ad hoc. Using standardized, tested submodels of individual organisms would make individual-based modelling more efficient and coherent. In this thesis, I explored whether Dynamic Energy Budget (DEB) theory is suitable for being used as a standard submodel in individual-based models, both for ecological risk assessment and theoretical population ecology. First, I developed a generic implementation of DEB theory in an individual-based modeling (IBM) context: DEB-IBM. Using the DEB-IBM framework I tested the ability of the DEB theory to predict population-level dynamics from the properties of individuals. We used Daphnia magna as a model species, where data at the individual level was available to parameterize the model, and population-level predictions were compared against independent data from controlled population experiments. We found that DEB theory successfully predicted population growth rates and peak densities of experimental Daphnia populations in multiple experimental settings, but failed to capture the decline phase, when the available food per Daphnia was low. Further assumptions on food-dependent mortality of juveniles were needed to capture the population dynamics after the initial population peak. The resulting model then predicted, without further calibration, characteristic switches between small- and large-amplitude cycles, which have been observed for Daphnia. We conclude that cross-level tests help detecting gaps in current individual-level theories and ultimately will lead to theory development and the establishment of a generic basis for individual-based models and ecology. In addition to theoretical explorations, we tested the potential of DEB theory combined with IBMs to extrapolate effects of chemical stress from the individual to population level. For this we used information at the individual level on the effect of 3,4-dichloroanailine on Daphnia. The individual data suggested direct effects on reproduction but no significant effects on growth. Assuming such direct effects on reproduction, the model was able to accurately predict the population response to increasing concentrations of 3,4-dichloroaniline. We conclude that DEB theory combined with IBMs holds great potential for standardized ecological risk assessment based on ecological models.}, language = {en} } @phdthesis{Kolk2019, author = {Kolk, Jens}, title = {The long-term legacy of historical land cover changes}, doi = {10.25932/publishup-43939}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-439398}, school = {Universit{\"a}t Potsdam}, pages = {196}, year = {2019}, abstract = {Over the last years there is an increasing awareness that historical land cover changes and associated land use legacies may be important drivers for present-day species richness and biodiversity due to time-delayed extinctions or colonizations in response to historical environmental changes. Historically altered habitat patches may therefore exhibit an extinction debt or colonization credit and can be expected to lose or gain species in the future. However, extinction debts and colonization credits are difficult to detect and their actual magnitudes or payments have rarely been quantified because species richness patterns and dynamics are also shaped by recent environmental conditions and recent environmental changes. In this thesis we aimed to determine patterns of herb-layer species richness and recent species richness dynamics of forest herb layer plants and link those patterns and dynamics to historical land cover changes and associated land use legacies. The study was conducted in the Prignitz, NE-Germany, where the forest distribution remained stable for the last ca. 100 years but where a) the deciduous forest area had declined by more than 90 per cent (leaving only remnants of "ancient forests"), b) small new forests had been established on former agricultural land ("post-agricultural forests"). Here, we analyzed the relative importance of land use history and associated historical land cover changes for herb layer species richness compared to recent environmental factors and determined magnitudes of extinction debt and colonization credit and their payment in ancient and post-agricultural forests, respectively. We showed that present-day species richness patterns were still shaped by historical land cover changes that ranged back to more than a century. Although recent environmental conditions were largely comparable we found significantly more forest specialists, species with short-distance dispersal capabilities and clonals in ancient forests than in post-agricultural forests. Those species richness differences were largely contingent to a colonization credit in post-agricultural forests that ranged up to 9 species (average 4.7), while the extinction debt in ancient forests had almost completely been paid. Environmental legacies from historical agricultural land use played a minor role for species richness differences. Instead, patch connectivity was most important. Species richness in ancient forests was still dependent on historical connectivity, indicating a last glimpse of an extinction debt, and the colonization credit was highest in isolated post-agricultural forests. In post-agricultural forests that were better connected or directly adjacent to ancient forest patches the colonization credit was way smaller and we were able to verify a gradual payment of the colonization credit from 2.7 species to 1.5 species over the last six decades.}, language = {en} } @phdthesis{Clodong2004, author = {Clodong, S{\´e}bastien}, title = {Recurrent outbreaks in ecology : chaotic dynamics in complex networks}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-0001626}, school = {Universit{\"a}t Potsdam}, year = {2004}, abstract = {Gegenstand der Dissertation ist die Untersuchung von wiederkehrenden Ausbr{\"u}chen (wie z.B. Epidemien) in der Natur. Dies gelang anhand von Modellen, die die Dynamik von Phytoplankton und die Ausbreitung von Krankheiten zwischen St{\"a}dten beschreiben. Diese beide Systeme bilden hervorragende Beispiele f{\"u}r solche Ph{\"a}nomene. Die Frage, ob die in der Zeit wiederkehrenden Ausbr{\"u}che ein Ausdruck chaotischer Dynamik sein k{\"o}nnen, ist aktuell in der {\"O}kologie und fasziniert Wissenschaftler dieser Disziplin. Wir konnten zeigen, dass sich das Plankton-Modell im Falle von periodischem Antreiben {\"u}ber die N{\"a}hrstoffe in einem chaotischen Regime befindet. Diese Dynamik wurde als die komplexe Wechselwirkung zweier Oszillatoren verstanden. Ebenfalls wurde die Ausbreitung von Epidemien in Netzwerken wechselwirkender St{\"a}dte mit unterschiedlichen Gr{\"o}ssen untersucht. Daf{\"u}r wurde zun{\"a}chst die Kopplung zwischen zwei St{\"a}dten als Verh{\"a}ltnis der Stadtgr{\"o}ssen eingef{\"u}hrt. Es konnte gezeigt werden, dass das System sich in einem globalen zweij{\"a}hrigen Zyklus, der auch in den realen Daten beobachtet wird, befinden kann. Der Effekt von Heterogenit{\"a}t in der Gr{\"o}sseverteilung ist durch gewichtete Kopplung von generischen Modellen (Zelt- und Logistische Abbildung) in Netzwerken im Detail untersucht worden. Eine neue Art von Kopplungsfunktion mit nichtlinearer S{\"a}ttigung wurde eingef{\"u}hrt, um die Stabilit{\"a}t des Systems zu gew{\"a}hrleisten. Diese Kopplung beinhaltet einen Parameter, der es erlaubt, die Netzwerktopologie von globaler Kopplung in gerichtete Netzwerke gleichm{\"a}ssig umzuwandeln. Die Dynamik des Systems wurde anhand von Bifurkationsdiagrammen untersucht. Zum Verst{\"a}ndnis dieser Dynamik wurde eine effektive Theorie, die die beobachteten Bifurkationen sehr gut nachahmt, entwickelt.}, language = {en} } @phdthesis{CalderonQuinonez2023, author = {Calder{\´o}n Qui{\~n}{\´o}nez, Ana Patricia}, title = {Ecology and conservation of the jaguar (Panthera onca) in Central America}, doi = {10.25932/publishup-61367}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-613671}, school = {Universit{\"a}t Potsdam}, pages = {140}, year = {2023}, abstract = {Conservation of the jaguar relies on holistic and transdisciplinary conservation strategies that integratively safeguard essential, connected habitats, sustain viable populations and their genetic exchange, and foster peaceful human-jaguar coexistence. These strategies define four research priorities to advance jaguar conservation throughout the species' range. In this thesis I provide several relevant ecological and sociological insights into these research priorities, each addressed in a separate chapter. I focus on the effects of anthropogenic landscapes on jaguar habitat use and population gene flow, spatial patterns of jaguar habitat suitability and functional population connectivity, and on innovative governance approaches which can work synergistically to help achieve human-wildlife conviviality. Furthermore, I translate these insights into recommendations for conservation practice by providing tools and suggestions that conservation managers and stakeholders can use to implement local actions but also make broad scale conservation decisions in Central America. In Chapter 2, I model regional habitat use of jaguars, producing spatially-explicit maps for management of key areas of habitat suitability. Using an occupancy model of 13-year-camera-trap occurrence data, I show that human influence has the strongest impact on jaguar habitat use, and that Jaguar Conservation Units are the most important reservoirs of high quality habitat in this region. I build upon these results by zooming in to an area of high habitat suitability loss in Chapter 3, northern Central America. Here I study the drivers of jaguar gene flow and I produce spatially-explicit maps for management of key areas of functional population connectivity in this region. I use microsatellite data and pseudo-optimized multiscale, multivariate resistance surfaces of gene flow to show that jaguar gene flow is influenced by environmental, and even more strongly, by human influence variables; and that the areas of lowest gene flow resistance largely coincide with the location of the Jaguar Conservation Units. Given that human activities significantly impact jaguar habitat use and gene flow, securing viable jaguar populations in anthropogenic landscapes also requires fostering peaceful human-wildlife coexistence. This is a complex challenge that cannot be met without transdisciplinary academic research and cross-sectoral, collaborative governance structures that effectively respond to the multiple challenges of such coexistence. With this in mind, I focus in Chapter 4 on carnivore conservation initiatives that apply transformative governance approaches to enact transformative change towards human-carnivore coexistence. Using the frameworks of transformative biodiversity governance and convivial conservation, I highlight in this chapter concrete pathways, supported by more inclusive, democratic forms of conservation decision-making and participation that promote truly transformative changes towards human-jaguar conviviality.}, language = {en} }