@phdthesis{AmaroSeoane2016, author = {Amaro-Seoane, Pau}, title = {Dense stellar systems and massive black holes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-95439}, school = {Universit{\"a}t Potsdam}, pages = {239}, year = {2016}, abstract = {Gravity dictates the structure of the whole Universe and, although it is triumphantly described by the theory of General Relativity, it is the force that we least understand in nature. One of the cardinal predictions of this theory are black holes. Massive, dark objects are found in the majority of galaxies. Our own galactic center very contains such an object with a mass of about four million solar masses. Are these objects supermassive black holes (SMBHs), or do we need alternatives? The answer lies in the event horizon, the characteristic that defines a black hole. The key to probe the horizon is to model the movement of stars around a SMBH, and the interactions between them, and look for deviations from real observations. Nuclear star clusters harboring a massive, dark object with a mass of up to ~ ten million solar masses are good testbeds to probe the event horizon of the potential SMBH with stars. The channel for interactions between stars and the central MBH are the fact that (a) compact stars and stellar-mass black holes can gradually inspiral into the SMBH due to the emission of gravitational radiation, which is known as an "Extreme Mass Ratio Inspiral" (EMRI), and (b) stars can produce gases which will be accreted by the SMBH through normal stellar evolution, or by collisions and disruptions brought about by the strong central tidal field. Such processes can contribute significantly to the mass of the SMBH. These two processes involve different disciplines, which combined will provide us with detailed information about the fabric of space and time. In this habilitation I present nine articles of my recent work directly related with these topics.}, language = {en} } @phdthesis{Antonelli2021, author = {Antonelli, Andrea}, title = {Accurate waveform models for gravitational-wave astrophysics: synergetic approaches from analytical relativity}, doi = {10.25932/publishup-57667}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-576671}, school = {Universit{\"a}t Potsdam}, pages = {XII, 259, LXXV}, year = {2021}, abstract = {Gravitational-wave (GW) astrophysics is a field in full blossom. Since the landmark detection of GWs from a binary black hole on September 14th 2015, fifty-two compact-object binaries have been reported by the LIGO-Virgo collaboration. Such events carry astrophysical and cosmological information ranging from an understanding of how black holes and neutron stars are formed, what neutron stars are composed of, how the Universe expands, and allow testing general relativity in the highly-dynamical strong-field regime. It is the goal of GW astrophysics to extract such information as accurately as possible. Yet, this is only possible if the tools and technology used to detect and analyze GWs are advanced enough. A key aspect of GW searches are waveform models, which encapsulate our best predictions for the gravitational radiation under a certain set of parameters, and that need to be cross-correlated with data to extract GW signals. Waveforms must be very accurate to avoid missing important physics in the data, which might be the key to answer the fundamental questions of GW astrophysics. The continuous improvements of the current LIGO-Virgo detectors, the development of next-generation ground-based detectors such as the Einstein Telescope or the Cosmic Explorer, as well as the development of the Laser Interferometer Space Antenna (LISA), demand accurate waveform models. While available models are enough to capture the low spins, comparable-mass binaries routinely detected in LIGO-Virgo searches, those for sources from both current and next-generation ground-based and spaceborne detectors must be accurate enough to detect binaries with large spins and asymmetry in the masses. Moreover, the thousands of sources that we expect to detect with future detectors demand accurate waveforms to mitigate biases in the estimation of signals' parameters due to the presence of a foreground of many sources that overlap in the frequency band. This is recognized as one of the biggest challenges for the analysis of future-detectors' data, since biases might hinder the extraction of important astrophysical and cosmological information from future detectors' data. In the first part of this thesis, we discuss how to improve waveform models for binaries with high spins and asymmetry in the masses. In the second, we present the first generic metrics that have been proposed to predict biases in the presence of a foreground of many overlapping signals in GW data. For the first task, we will focus on several classes of analytical techniques. Current models for LIGO and Virgo studies are based on the post-Newtonian (PN, weak-field, small velocities) approximation that is most natural for the bound orbits that are routinely detected in GW searches. However, two other approximations have risen in prominence, the post-Minkowskian (PM, weak- field only) approximation natural for unbound (scattering) orbits and the small-mass-ratio (SMR) approximation typical of binaries in which the mass of one body is much bigger than the other. These are most appropriate to binaries with high asymmetry in the masses that challenge current waveform models. Moreover, they allow one to "cover" regions of the parameter space of coalescing binaries, thereby improving the interpolation (and faithfulness) of waveform models. The analytical approximations to the relativistic two-body problem can synergically be included within the effective-one-body (EOB) formalism, in which the two-body information from each approximation can be recast into an effective problem of a mass orbiting a deformed Schwarzschild (or Kerr) black hole. The hope is that the resultant models can cover both the low-spin comparable-mass binaries that are routinely detected, and the ones that challenge current models. The first part of this thesis is dedicated to a study about how to best incorporate information from the PN, PM, SMR and EOB approaches in a synergistic way. We also discuss how accurate the resulting waveforms are, as compared against numerical-relativity (NR) simulations. We begin by comparing PM models, whether alone or recast in the EOB framework, against PN models and NR simulations. We will show that PM information has the potential to improve currently-employed models for LIGO and Virgo, especially if recast within the EOB formalism. This is very important, as the PM approximation comes with a host of new computational techniques from particle physics to exploit. Then, we show how a combination of PM and SMR approximations can be employed to access previously-unknown PN orders, deriving the third subleading PN dynamics for spin-orbit and (aligned) spin1-spin2 couplings. Such new results can then be included in the EOB models currently used in GW searches and parameter estimation studies, thereby improving them when the binaries have high spins. Finally, we build an EOB model for quasi-circular nonspinning binaries based on the SMR approximation (rather than the PN one as usually done). We show how this is done in detail without incurring in the divergences that had affected previous attempts, and compare the resultant model against NR simulations. We find that the SMR approximation is an excellent approximation for all (quasi-circular nonspinning) binaries, including both the equal-mass binaries that are routinely detected in GW searches and the ones with highly asymmetric masses. In particular, the SMR-based models compare much better than the PN models, suggesting that SMR-informed EOB models might be the key to model binaries in the future. In the second task of this thesis, we work within the linear-signal ap- proximation and describe generic metrics to predict inference biases on the parameters of a GW source of interest in the presence of confusion noise from unfitted foregrounds and from residuals of other signals that have been incorrectly fitted out. We illustrate the formalism with simple (yet realistic) LISA sources, and demonstrate its validity against Monte-Carlo simulations. The metrics we describe pave the way for more realistic studies to quantify the biases with future ground-based and spaceborne detectors.}, language = {en} } @phdthesis{Moesta2011, author = {M{\"o}sta, Philipp}, title = {Novel aspects of the dynamics of binary black-hole mergers}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-59820}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {The inspiral and merger of two black holes is among the most exciting and extreme events in our universe. Being one of the loudest sources of gravitational waves, they provide a unique dynamical probe of strong-field general relativity and a fertile ground for the observation of fundamental physics. While the detection of gravitational waves alone will allow us to observe our universe through an entirely new window, combining the information obtained from both gravitational wave and electro-magnetic observations will allow us to gain even greater insight in some of the most exciting astrophysical phenomena. In addition, binary black-hole mergers serve as an intriguing tool to study the geometry of space-time itself. In this dissertation we study the merger process of binary black-holes in a variety of conditions. Our results show that asymmetries in the curvature distribution on the common apparent horizon are correlated to the linear momentum acquired by the merger remnant. We propose useful tools for the analysis of black holes in the dynamical and isolated horizon frameworks and shed light on how the final merger of apparent horizons proceeds after a common horizon has already formed. We connect mathematical theorems with data obtained from numerical simulations and provide a first glimpse on the behavior of these surfaces in situations not accessible to analytical tools. We study electro-magnetic counterparts of super-massive binary black-hole mergers with fully 3D general relativistic simulations of binary black-holes immersed both in a uniform magnetic field in vacuum and in a tenuous plasma. We find that while a direct detection of merger signatures with current electro-magnetic telescopes is unlikely, secondary emission, either by altering the accretion rate of the circumbinary disk or by synchrotron radiation from accelerated charges, may be detectable. We propose a novel approach to measure the electro-magnetic radiation in these simulations and find a non-collimated emission that dominates over the collimated one appearing in the form of dual jets associated with each of the black holes. Finally, we provide an optimized gravitational wave detection pipeline using phenomenological waveforms for signals from compact binary coalescence and show that by including spin effects in the waveform templates, the detection efficiency is drastically improved as well as the bias on recovered source parameters reduced. On the whole, this disseration provides evidence that a multi-messenger approach to binary black-hole merger observations provides an exciting prospect to understand these sources and, ultimately, our universe.}, language = {en} } @misc{RaetzelWilkensMenzel2016, author = {R{\"a}tzel, Dennis and Wilkens, Martin and Menzel, Ralf}, title = {Gravitational properties of light}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-90553}, year = {2016}, abstract = {The gravitational field of a laser pulse of finite lifetime, is investigated in the framework of linearized gravity. Although the effects are very small, they may be of fundamental physical interest. It is shown that the gravitational field of a linearly polarized light pulse is modulated as the norm of the corresponding electric field strength, while no modulations arise for circular polarization. In general, the gravitational field is independent of the polarization direction. It is shown that all physical effects are confined to spherical shells expanding with the speed of light, and that these shells are imprints of the spacetime events representing emission and absorption of the pulse. Nearby test particles at rest are attracted towards the pulse trajectory by the gravitational field due to the emission of the pulse, and they are repelled from the pulse trajectory by the gravitational field due to its absorption. Examples are given for the size of the attractive effect. It is recovered that massless test particles do not experience any physical effect if they are co-propagating with the pulse, and that the acceleration of massless test particles counter-propagating with respect to the pulse is four times stronger than for massive particles at rest. The similarities between the gravitational effect of a laser pulse and Newtonian gravity in two dimensions are pointed out. The spacetime curvature close to the pulse is compared to that induced by gravitational waves from astronomical sources.}, language = {en} } @article{RaetzelWilkensMenzel2016, author = {R{\"a}tzel, Dennis and Wilkens, Martin and Menzel, Ralf}, title = {Gravitational properties of light}, series = {New journal of physics : the open-access journal for physics}, volume = {18}, journal = {New journal of physics : the open-access journal for physics}, publisher = {IOP Science}, address = {London}, issn = {1367-2630}, doi = {10.1088/1367-2630/18/2/023009}, pages = {1 -- 16}, year = {2016}, abstract = {The gravitational field of a laser pulse of finite lifetime, is investigated in the framework of linearized gravity. Although the effects are very small, they may be of fundamental physical interest. It is shown that the gravitational field of a linearly polarized light pulse is modulated as the norm of the corresponding electric field strength, while no modulations arise for circular polarization. In general, the gravitational field is independent of the polarization direction. It is shown that all physical effects are confined to spherical shells expanding with the speed of light, and that these shells are imprints of the spacetime events representing emission and absorption of the pulse. Nearby test particles at rest are attracted towards the pulse trajectory by the gravitational field due to the emission of the pulse, and they are repelled from the pulse trajectory by the gravitational field due to its absorption. Examples are given for the size of the attractive effect. It is recovered that massless test particles do not experience any physical effect if they are co-propagating with the pulse, and that the acceleration of massless test particles counter-propagating with respect to the pulse is four times stronger than for massive particles at rest. The similarities between the gravitational effect of a laser pulse and Newtonian gravity in two dimensions are pointed out. The spacetime curvature close to the pulse is compared to that induced by gravitational waves from astronomical sources.}, language = {en} } @article{RaetzelWilkensMenzel2016, author = {R{\"a}tzel, Dennis and Wilkens, Martin and Menzel, Ralf}, title = {Gravitational properties of light-the gravitational field of a laser pulse}, series = {NEW JOURNAL OF PHYSICS}, volume = {18}, journal = {NEW JOURNAL OF PHYSICS}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/18/2/023009}, pages = {16}, year = {2016}, abstract = {The gravitational field of a laser pulse of finite lifetime, is investigated in the framework of linearized gravity. Although the effects are very small, they may be of fundamental physical interest. It is shown that the gravitational field of a linearly polarized light pulse is modulated as the norm of the corresponding electric field strength, while no modulations arise for circular polarization. In general, the gravitational field is independent of the polarization direction. It is shown that all physical effects are confined to spherical shells expanding with the speed of light, and that these shells are imprints of the spacetime events representing emission and absorption of the pulse. Nearby test particles at rest are attracted towards the pulse trajectory by the gravitational field due to the emission of the pulse, and they are repelled from the pulse trajectory by the gravitational field due to its absorption. Examples are given for the size of the attractive effect. It is recovered that massless test particles do not experience any physical effect if they are co-propagating with the pulse, and that the acceleration of massless test particles counter-propagating with respect to the pulse is four times stronger than for massive particles at rest. The similarities between the gravitational effect of a laser pulse and Newtonian gravity in two dimensions are pointed out. The spacetime curvature close to the pulse is compared to that induced by gravitational waves from astronomical sources.}, language = {en} }