@article{RichterKrauseFechneretal.2011, author = {Richter, Philipp and Krause, F. and Fechner, Cora and Charlton, Jane C. and Murphy, M. T.}, title = {The neutral gas extent of galaxies as derived from weak intervening Ca II absorbers}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {528}, journal = {Astronomy and astrophysics : an international weekly journal}, number = {4}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201015566}, pages = {22}, year = {2011}, abstract = {We present a systematic study of weak intervening CaII absorbers at low redshift (z < 0.5), based on the analysis of archival high-resolution (R >= 45 000) optical spectra of 304 quasars and active galactic nuclei observed with VLT/UVES. Along a total redshift path of Delta z approximate to 100 we detected 23 intervening CaII absorbers in both the CaII H \& K lines, with rest frame equivalent widths W-r,W-3934 = 15-799 m angstrom and column densities log N(CaII) = 11.25-13.04 (obtained by fitting Voigt-profile components). We obtain a bias-corrected number density of weak intervening CaII absorbers of dN/dz = 0.117 +/- 0.044 at < z(abs)> = 0.35 for absorbers with log N(CaII) >= 11.65 (W-r,W-3934 >= 32 m angstrom). This is similar to 2.6 times the value obtained for damped Lyman alpha absorbers (DLAs) at low redshift. All CaII absorbers in our sample show associated absorption by other low ions such as MgII and FeII; 45 percent of them have associated NaI absorption. From ionization modelling we conclude that intervening CaII absorption with log N(CaII) >= 11.5 arises in DLAs, sub-DLAs and Lyman-limit systems (LLS) at HI column densities of log N(HI) >= 17.4. Using supplementary HI information for nine of the absorbers we find that the CaII/HI ratio decreases strongly with increasing HI column density, indicating a column-density-dependent dust depletion of Ca. The observed column density distribution function of CaII absorption components follows a relatively steep power law, f(N) proportional to N-beta, with a slope of -beta = -1.68, which again points towards an enhanced dust depletion in high column density systems. The relatively large cross section of these absorbers together with the frequent detection of CaII absorption in high-velocity clouds (HVCs) in the halo of the Milky Way suggests that a considerable fraction of the intervening CaII systems trace (partly) neutral gas structures in the halos and circumgalactic environment of galaxies (i.e., they are HVC analogs). Based on the recently measured detection rate of CaII absorption in the Milky Way HVCs we estimate that the mean (projected) CaII covering fraction of galaxies and their gaseous halos is < f(c,CaII)> = 0.33. Using this value and considering all galaxies with luminosities L >= 0.05 L-star we calculate that the characteristic radial extent of (partly) neutral gas clouds with log N(HI) >= 17.4 around low-redshift galaxies is R-HVC approximate to 55 kpc.}, language = {en} } @article{TepperGarciaRichterSchayeetal.2011, author = {Tepper-Garcia, Thorsten and Richter, Philipp and Schaye, Joop and Booth, C. M. and Vecchia, Claudio Dalla and Theuns, Tom and Wiersma, Robert P. C.}, title = {Absorption signatures of warm-hot gas at low redshift o vi}, series = {Monthly notices of the Royal Astronomical Society}, volume = {413}, journal = {Monthly notices of the Royal Astronomical Society}, number = {1}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0035-8711}, doi = {10.1111/j.1365-2966.2010.18123.x}, pages = {190 -- 212}, year = {2011}, abstract = {We investigate the origin and physical properties of O vi absorbers at low redshift (z = 0.25) using a subset of cosmological, hydrodynamical simulations from the OverWhelmingly Large Simulations (OWLS) project. Intervening O vi absorbers are believed to trace shock-heated gas in the warm-hot intergalactic medium (WHIM) and may thus play a key role in the search for the missing baryons in the present-day Universe. When compared to observations, the predicted distributions of the different O vi line parameters (column density, Doppler parameter, rest equivalent width W-r) from our simulations exhibit a lack of strong O vi absorbers, a discrepancy that has also been found by Oppenheimer \& Dave. This suggests that physical processes on subgrid scales (e.g. turbulence) may strongly influence the observed properties of O vi systems. We find that the intervening O vi absorption arises mainly in highly metal enriched (10-1 < Z/Z(circle dot) less than or similar to 1) gas at typical overdensities of 1 < /<<>> less than or similar to 102. One-third of the O vi absorbers in our simulation are found to trace gas at temperatures T < 105 K, while the rest arises in gas at higher temperatures, most of them around T = 105.3 +/- 0.5 K. These temperatures are much higher than inferred by Oppenheimer \& Dave, probably because that work did not take the suppression of metal-line cooling by the photoionizing background radiation into account. While the O vi resides in a similar region of (, T)-space as much of the shock-heated baryonic matter, the vast majority of this gas has a lower metal content and does not give rise to detectable O vi absorption. As a consequence of the patchy metal distribution, O vi absorbers in our simulations trace only a very small fraction of the cosmic baryons (< 2 per cent) and the cosmic metals. Instead, these systems presumably trace previously shock-heated, metal-rich material from galactic winds that is now mixing with the ambient gas and cooling. The common approach of comparing O vi and H i column densities to estimate the physical conditions in intervening absorbers from QSO observations may be misleading, as most of the H i (and most of the gas mass) is not physically connected with the high-metallicity patches that give rise to the O vi absorption.}, language = {en} }