@article{BittmannDechSchaefer2023, author = {Bittmann, Frank and Dech, Silas and Schaefer, Laura}, title = {Another way to confuse motor control}, series = {Brain Sciences}, volume = {13}, journal = {Brain Sciences}, number = {7}, publisher = {MDPI}, address = {Basel}, issn = {2076-3425}, doi = {10.3390/brainsci13071105}, pages = {20}, year = {2023}, abstract = {Sensorimotor control can be impaired by slacked muscle spindles. This was shown for reflex responses and, recently, also for muscular stability in the sense of Adaptive Force (AF). The slack in muscle spindles was generated by contracting the lengthened muscle followed by passive shortening. AF was suggested to specifically reflect sensorimotor control since it requires tension-length control in adaptation to an increasing load. This study investigated AF parameters in reaction to another, manually performed slack procedure in a preselected sample (n = 13). The AF of 11 elbow and 12 hip flexors was assessed by an objectified manual muscle test (MMT) using a handheld device. Maximal isometric AF was significantly reduced after manual spindle technique vs. regular MMT. Muscle lengthening started at 64.93 \& PLUSMN; 12.46\% of maximal voluntary isometric contraction (MVIC). During regular MMT, muscle length could be maintained stable until 92.53 \& PLUSMN; 10.12\% of MVIC. Hence, muscular stability measured by AF was impaired after spindle manipulation. Force oscillations arose at a significantly lower level for regular vs. spindle. This supports the assumption that they are a prerequisite for stable adaptation. Reduced muscular stability in reaction to slack procedures is considered physiological since sensory information is misled. It is proposed to use slack procedures to test the functionality of the neuromuscular system, which is relevant for clinical practice.}, language = {en} } @article{BittmannDechSchaefer2023, author = {Bittmann, Frank and Dech, Silas and Schaefer, Laura}, title = {How to confuse motor control}, series = {Life : open access journal}, volume = {13}, journal = {Life : open access journal}, number = {4}, publisher = {MDPI}, address = {Basel}, issn = {2075-1729}, doi = {10.3390/life13040911}, pages = {18}, year = {2023}, abstract = {Adaptation to external forces relies on a well-functioning proprioceptive system including muscle spindle afferents. Muscle length and tension control in reaction to external forces is most important regarding the Adaptive Force (AF). This study investigated the effect of different procedures, which are assumed to influence the function of muscle spindles, on the AF. Elbow flexors of 12 healthy participants (n = 19 limbs) were assessed by an objectified manual muscle test (MMT) with different procedures: regular MMT, MMT after precontraction (self-estimated 20\% MVIC) in lengthened position with passive return to test position (CL), and MMT after CL with a second precontraction in test position (CL-CT). During regular MMTs, muscles maintained their length up to 99.7\% +/- 1.0\% of the maximal AF (AF(max)). After CL, muscles started to lengthen at 53.0\% +/- 22.5\% of AF(max). For CL-CT, muscles were again able to maintain the static position up to 98.3\% +/- 5.5\% of AF(max). AFiso(max) differed highly significantly between CL vs. CL-CT and regular MMT. CL was assumed to generate a slack of muscle spindles, which led to a substantial reduction of the holding capacity. This was immediately erased by a precontraction in the test position. The results substantiate that muscle spindle sensitivity seems to play an important role for neuromuscular functioning and musculoskeletal stability.}, language = {en} } @article{GafosLieshout2020, author = {Gafos, Adamantios I. and Lieshout, Pascal H. H. M. van}, title = {Models and theories of speech production}, series = {Frontiers in psychology}, volume = {11}, journal = {Frontiers in psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2020.01238}, pages = {4}, year = {2020}, language = {en} } @article{SchaeferDechWolffetal.2022, author = {Schaefer, Laura and Dech, Silas and Wolff, Lara L. and Bittmann, Frank}, title = {Emotional Imagery Influences the Adaptive Force in Young Women}, series = {Brain Sciences}, volume = {12}, journal = {Brain Sciences}, number = {10}, publisher = {MDPI}, address = {Basel, Schweiz}, issn = {2076-3425}, doi = {10.3390/brainsci12101318}, pages = {23}, year = {2022}, abstract = {The link between emotions and motor function has been known for decades but is still not clarified. The Adaptive Force (AF) describes the neuromuscular capability to adapt to increasing forces and was suggested to be especially vulnerable to interfering inputs. This study investigated the influence of pleasant an unpleasant food imagery on the manually assessed AF of elbow and hip flexors objectified by a handheld device in 12 healthy women. The maximal isometric AF was significantly reduced during unpleasant vs. pleasant imagery and baseline (p < 0.001, dz = 0.98-1.61). During unpleasant imagery, muscle lengthening started at 59.00 ± 22.50\% of maximal AF, in contrast to baseline and pleasant imagery, during which the isometric position could be maintained mostly during the entire force increase up to ~97.90 ± 5.00\% of maximal AF. Healthy participants showed an immediately impaired holding function triggered by unpleasant imagery, presumably related to negative emotions. Hence, AF seems to be suitable to test instantaneously the effect of emotions on motor function. Since musculoskeletal complaints can result from muscular instability, the findings provide insights into the understanding of the causal chain of linked musculoskeletal pain and mental stress. A case example (current stress vs. positive imagery) suggests that the approach presented in this study might have future implications for psychomotor diagnostics and therapeutics.}, language = {en} } @article{SchaeferHoffBittmann2017, author = {Schaefer, Laura and Hoff, Marco and Bittmann, Frank}, title = {Measuring system and method of determining the Adaptive Force}, series = {European journal of translational myology}, volume = {27}, journal = {European journal of translational myology}, number = {3}, publisher = {Unipress}, address = {Padova}, issn = {2037-7460}, doi = {10.4081/ejtm.2017.6479}, pages = {152 -- 159}, year = {2017}, abstract = {The term Adaptive Force (AF) describes the capability of adaptation of the nerve-muscle-system to externally applied forces during isometric and eccentric muscle action. This ability plays an important role in real life motions as well as in sports. The focus of this paper is on the specific measurement method of this neuromuscular action, which can be seen as innovative. A measuring system based on the use of compressed air was constructed and evaluated for this neuromuscular function. It depends on the physical conditions of the subject, at which force level it deviates from the quasi isometric position and merges into eccentric muscle action. The device enables - in contrast to the isokinetic systems - a measure of strength without forced motion. Evaluation of the scientific quality criteria of the devices was done by measurements regarding the intra- and interrater-, the test-retest-reliability and fatiguing measurements. Comparisons of the pneumatic device with a dynamometer were also done. Looking at the mechanical evaluation, the results show a high level of consistency (r²=0.94 to 0.96). The parallel test reliability delivers a very high and significant correlation (ρ=0.976; p=0.000). Including the biological system, the concordance of three different raters is very high (p=0.001, Cronbachs alpha α=0.987). The test retest with 4 subjects over five weeks speaks for the reliability of the device in showing no statistically significant differences. These evaluations indicate that the scientific evaluation criteria are fulfilled. The specific feature of this system is that an isometric position can be maintained while the externally impacting force rises. Moreover, the device can capture concentric, static and eccentric strength values. Fields of application are performance diagnostics in sports and medicine.}, language = {en} }