@article{HaghipourBurgKoberetal.2012, author = {Haghipour, Negar and Burg, Jean-Pierre and Kober, Florian and Zeilinger, Gerold and Ivy-Ochs, Susan and Kubik, Peter W. and Faridi, Mohammad}, title = {Rate of crustal shortening and non-Coulomb behaviour of an active accretionary wedge - the folded fluvial terraces in Makran (SE, Iran)}, series = {Earth \& planetary science letters}, volume = {355}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2012.09.001}, pages = {187 -- 198}, year = {2012}, abstract = {We surveyed fluvial terraces to decipher the Quaternary increment of crustal shortening and shortening rate in the on-shore Makran Accretionary Wedge. We focused on three major catchment basins and associated fold systems. Terrace profiles reconstructed from differential GPS measurements combined with DEM revealed two regional dominant wavelengths, about 5 km in the northern part of the study area and about 15 km to the south. These two wavelengths suggest the existence of two active decollement layers at two rooting depths. The average shortening rate due to folding is estimated at 0.8-1.2 mm/a over the last 130 ka. This accounts for 10-15\% of the shortening rate (similar to 8 mm/a) given by kinematic GPS measurements between Chabahar and Bazman and 3\% of the convergence between Arabia and Eurasia, across the Makran subduction zone. Despite active deformation and a relatively high shortening rate, the geophysical record shows nearly absent seismic activity in Makran. We propose that strain accumulated in folds over intermediate decollement levels within a thick, incompletely lithified sedimentary cover explains the essentially aseismic, recent tectonics in this region. The importance of folds points to imperfect Coulomb behaviour of the wedge. (C) 2012 Elsevier B.V. All rights reserved.}, language = {en} } @article{SchildgenRobinsonSavietal.2016, author = {Schildgen, Taylor F. and Robinson, Ruth A. J. and Savi, Sara and Phillips, William M. and Spencer, Joel Q. G. and Bookhagen, Bodo and Scherler, Dirk and Tofelde, Stefanie and Alonso, Ricardo N. and Kubik, Peter W. and Binnie, Steven A. and Strecker, Manfred}, title = {Landscape response to late Pleistocene climate change in NW Argentina: Sediment flux modulated by basin geometry and connectivity}, series = {Journal of geophysical research : Earth surface}, volume = {121}, journal = {Journal of geophysical research : Earth surface}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9003}, doi = {10.1002/2015JF003607}, pages = {392 -- 414}, year = {2016}, abstract = {Fluvial fill terraces preserve sedimentary archives of landscape responses to climate change, typically over millennial timescales. In the Humahuaca Basin of NW Argentina (Eastern Cordillera, southern Central Andes), our 29 new optically stimulated luminescence ages of late Pleistocene fill terrace sediments demonstrate that the timing of past river aggradation occurred over different intervals on the western and eastern sides of the valley, despite their similar bedrock lithology, mean slopes, and precipitation. In the west, aggradation coincided with periods of increasing precipitation, while in the east, aggradation coincided with decreasing precipitation or more variable conditions. Erosion rates and grain size dependencies in our cosmogenic Be-10 analyses of modern and fill terrace sediments reveal an increased importance of landsliding compared to today on the west side during aggradation, but of similar importance during aggradation on the east side. Differences in the timing of aggradation and the Be-10 data likely result from differences in valley geometry, which causes sediment to be temporarily stored in perched basins on the east side. It appears as if periods of increasing precipitation triggered landslides throughout the region, which induced aggradation in the west, but blockage of the narrow bedrock gorges downstream from the perched basins in the east. As such, basin geometry and fluvial connectivity appear to strongly influence the timing of sediment movement through the system. For larger basins that integrate subbasins with differing geometries or degrees of connectivity (like Humahuaca), sedimentary responses to climate forcing are likely attenuated.}, language = {en} }