@phdthesis{Behm2019, author = {Behm, Laura Vera Johanna}, title = {Thermoresponsive Zellkultursubstrate f{\"u}r zeitlich-r{\"a}umlich gesteuertes Auswachsen neuronaler Zellen}, doi = {10.25932/publishup-43619}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-436196}, school = {Universit{\"a}t Potsdam}, pages = {VII, 105}, year = {2019}, abstract = {Ein wichtiges Ziel der Neurowissenschaften ist das Verst{\"a}ndnis der komplexen und zugleich faszinierenden, hochgeordneten Vernetzung der Neurone im Gehirn, welche neuronalen Prozessen, wie zum Beispiel dem Wahrnehmen oder Lernen wie auch Neuropathologien zu Grunde liegt. F{\"u}r verbesserte neuronale Zellkulturmodelle zur detaillierten Untersuchung dieser Prozesse ist daher die Rekonstruktion von geordneten neuronalen Verbindungen dringend erforderlich. Mit Oberfl{\"a}chenstrukturen aus zellattraktiven und zellabweisenden Beschichtungen k{\"o}nnen neuronale Zellen und ihre Neuriten in vitro strukturiert werden. Zur Kontrolle der neuronalen Verbindungsrichtung muss das Auswachsen der Axone zu benachbarten Zellen dynamisch gesteuert werden, zum Beispiel {\"u}ber eine ver{\"a}nderliche Zug{\"a}nglichkeit der Oberfl{\"a}che. In dieser Arbeit wurde untersucht, ob mit thermoresponsiven Polymeren (TRP) beschichtete Zellkultursubstrate f{\"u}r eine dynamische Kontrolle des Auswachsens neuronaler Zellen geeignet sind. TRP k{\"o}nnen {\"u}ber die Temperatur von einem zellabweisenden in einen zellattraktiven Zustand geschaltet werden, womit die Zug{\"a}nglichkeit der Oberfl{\"a}che f{\"u}r Zellen dynamisch gesteuert werden kann. Die TRP-Beschichtung wurde mikrostrukturiert, um einzelne oder wenige neuronale Zellen zun{\"a}chst auf der Oberfl{\"a}che anzuordnen und das Auswachsen der Zellen und Neuriten {\"u}ber definierte TRP-Bereiche in Abh{\"a}ngigkeit der Temperatur zeitlich und r{\"a}umlich zu kontrollieren. Das Protokoll wurde mit der neuronalen Zelllinie SH-SY5Y etabliert und auf humane induzierte Neurone {\"u}bertragen. Die Anordnung der Zellen konnte bei Kultivierung im zellabweisenden Zustand des TRPs f{\"u}r bis zu 7 Tage aufrecht erhalten werden. Durch Schalten des TRPs in den zellattraktiven Zustand konnte das Auswachsen der Neuriten und Zellen zeitlich und r{\"a}umlich induziert werden. Immunozytochemische F{\"a}rbungen und Patch-Clamp-Ableitungen der Neurone demonstrierten die einfache Anwendbarkeit und Zellkompatibilit{\"a}t der TRP-Substrate. Eine pr{\"a}zisere r{\"a}umliche Kontrolle des Auswachsens der Zellen sollte durch lokales Schalten der TRP-Beschichtung erreicht werden. Daf{\"u}r wurden Mikroheizchips mit Mikroelektroden zur lokalen Jouleschen Erw{\"a}rmung der Substratoberfl{\"a}che entwickelt. Zur Evaluierung der generierten Temperaturprofile wurde eine Temperaturmessmethode entwickelt und die erhobenen Messwerte mit numerisch simulierten Werten abgeglichen. Die Temperaturmessmethode basiert auf einfach zu applizierenden Sol-Gel-Schichten, die den temperatursensitiven Fluoreszenzfarbstoff Rhodamin B enthalten. Sie erm{\"o}glicht oberfl{\"a}chennahe Temperaturmessungen in trockener und w{\"a}ssriger Umgebung mit hoher Orts- und Temperaturaufl{\"o}sung. Numerische Simulationen der Temperaturprofile korrelierten gut mit den experimentellen Daten. Auf dieser Basis konnten Geometrie und Material der Mikroelektroden hinsichtlich einer lokal stark begrenzten Temperierung optimiert werden. Ferner wurden f{\"u}r die Kultvierung der Zellen auf den Mikroheizchips eine Zellkulturkammer und Kontaktboard f{\"u}r die elektrische Kontaktierung der Mikroelektroden geschaffen. Die vorgestellten Ergebnisse demonstrieren erstmalig das enorme Potential thermoresponsiver Zellkultursubstrate f{\"u}r die zeitlich und r{\"a}umlich gesteuerte Formation geordneter neuronaler Verbindungen in vitro. Zuk{\"u}nftig k{\"o}nnte dies detaillierte Studien zur neuronalen Informationsverarbeitung oder zu Neuropathologien an relevanten, humanen Zellmodellen erm{\"o}glichen.}, language = {de} }