@article{FeudelTuckermanGellertetal.2015, author = {Feudel, Fred and Tuckerman, L. S. and Gellert, Marcus and Seehafer, Norbert}, title = {Bifurcations of rotating waves in rotating spherical shell convection}, series = {Physical Review E}, volume = {92}, journal = {Physical Review E}, number = {5}, publisher = {American Physical Society}, address = {Woodbury}, issn = {1539-3755}, doi = {10.1103/PhysRevE.92.053015}, year = {2015}, abstract = {The dynamics and bifurcations of convective waves in rotating and buoyancy-driven spherical Rayleigh-Benard convection are investigated numerically. The solution branches that arise as rotating waves (RWs) are traced by means of path-following methods, by varying the Rayleigh number as a control parameter for different rotation rates. The dependence of the azimuthal drift frequency of the RWs on the Ekman and Rayleigh numbers is determined and discussed. The influence of the rotation rate on the generation and stability of secondary branches is demonstrated. Multistability is typical in the parameter range considered.}, language = {en} } @phdthesis{Giesecke2007, author = {Giesecke, Andr{\´e}}, title = {Box-Simulationen von rotierender Magnetokonvektion im fl{\"u}ssigen Erdkern}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-13605}, school = {Universit{\"a}t Potsdam}, year = {2007}, abstract = {Box-Simulationen von rotierender Magnetokonvektion im fl{\"u}ssigen Erdkern Numerische Simulationen der 3D-MHD Gleichungen sind mit Hilfe des Codes NIRVANA durchgef{\"u}hrt worden. Die Gleichungen f{\"u}r kompressible rotierende Magnetokonvektion wurden f{\"u}r erd{\"a}hnliche Bedingungen numerisch in einer kartesischen Box gel{\"o}st. Charakteristische Eigenschaften mittlerer Gr{\"o}ßen, wie der Turbulenz-Intensit{\"a}t oder der turbulente W{\"a}rmefluss, die durch die kombinierte Wirkung kleinskaliger Fluktuationen entstehen, wurden bestimmt. Die Korrelationsl{\"a}nge der Turbulenz h{\"a}ngt signifikant von der St{\"a}rke und der Orientierung des Magnetfeldes ab, und das anisotrope Verhalten der Turbulenz aufgrund von Coriolis- und Lorentzkraft ist f{\"u}r schnellere Rotation wesentlich st{\"a}rker ausgepr{\"a}gt. Die Ausbildung eines isotropen Verhaltens auf kleinen Skalen unter dem Einfluss von Rotation alleine wird bereits durch ein schwaches Magnetfeld verhindert. Dies resultiert in einer turbulenten Str{\"o}mung, die durch die vertikale Komponente dominiert wird. In Gegenwart eines horizontalen Magnetfeldes nimmt der vertikale turbulente W{\"a}rmefluss leicht mit zunehmender Feldst{\"a}rke zu, so dass die K{\"u}hlung eines rotierenden Systems verbessert wird. Der horizontale W{\"a}rmetransport ist stets westw{\"a}rts und in Richtung der Pole orientiert. Letzteres kann unter Umst{\"a}nden die Quelle f{\"u}r eine großskalige meridionale Str{\"o}mung darstellen, w{\"a}hrend erstes in globalen Simulationen mit nicht axialsymmetrischen Randbedingungen f{\"u}r den W{\"a}rmefluss von Bedeutung ist. Die mittlere elektromotorische Kraft, die die Erzeugung von magnetischem Fluss durch die Turbulenz beschreibt, wurde unmittelbar aus den L{\"o}sungen f{\"u}r Geschwindigkeit und Magnetfeld berechnet. Hieraus konnten die entsprechenden α-Koeffizienten hergeleitet werden. Aufgrund der sehr schwachen Dichtestratifizierung {\"a}ndert der α-Effekt sein Vorzeichen nahezu exakt in der Mitte der Box. Der α-Effekt ist positiv in der oberen H{\"a}lfte und negativ in der unteren H{\"a}lfte einer auf der Nordhalbkugel rotierenden Box. F{\"u}r ein starkes Magnetfeld ergibt sich zudem eine deutliche abw{\"a}rts orientierte Advektion von magnetischem Fluss. Ein Mean-Field Modell des Geodynamos wurde konstruiert, das auf dem α-Effekt basiert, wie er aus den Box-Simulationen berechnet wurde. F{\"u}r eine {\"a}ußerst beschr{\"a}nkte Klasse von radialen α-Profilen weist das lineare α^2-Modell Oszillationen auf einer Zeitskala auf, die durch die turbulente Diffusionszeit bestimmt wird. Die wesentlichen Eigenschaften der periodischen L{\"o}sungen werden pr{\"a}sentiert, und der Einfluss der Gr{\"o}ße des inneren Kerns auf die Charakteristiken des kritischen Bereichs, innerhalb dessen oszillierende L{\"o}sungen auftreten, wurden untersucht. Reversals werden als eine halbe Oszillation interpretiert. Sie sind ein recht seltenes Ereignis, da sie lediglich dann stattfinden k{\"o}nnen, wenn das α-Profil ausreichend lange in dem periodische L{\"o}sungen erlaubenden Bereich liegt. Aufgrund starker Fluktuationen auf der konvektiven Zeitskala ist die Wahrscheinlichkeit eines solchen Reversals relativ klein. In einem einfachen nicht-linearen Mean-Field Modell mit realistischen Eingabeparametern, die auf den Box-Simulationen beruhen, konnte die Plausibilit{\"a}t des Reversal-Modells anhand von Langzeitsimulationen belegt werden.}, language = {de} } @article{PrattBusseMuelleretal.2017, author = {Pratt, Jane and Busse, Angela and Mueller, W-C and Watkins, Nikolas W. and Chapman, Sandra C.}, title = {Extreme-value statistics from Lagrangian convex hull analysis for homogeneous turbulent Boussinesq convection and MHD convection}, series = {New journal of physics : the open-access journal for physics}, volume = {19}, journal = {New journal of physics : the open-access journal for physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1367-2630}, doi = {10.1088/1367-2630/aa6fe8}, pages = {18}, year = {2017}, abstract = {We investigate the utility of the convex hull of many Lagrangian tracers to analyze transport properties of turbulent flows with different anisotropy. In direct numerical simulations of statistically homogeneous and stationary Navier-Stokes turbulence, neutral fluid Boussinesq convection, and MHD Boussinesq convection a comparison with Lagrangian pair dispersion shows that convex hull statistics capture the asymptotic dispersive behavior of a large group of passive tracer particles. Moreover, convex hull analysis provides additional information on the sub-ensemble of tracers that on average disperse most efficiently in the form of extreme value statistics and flow anisotropy via the geometric properties of the convex hulls. We use the convex hull surface geometry to examine the anisotropy that occurs in turbulent convection. Applying extreme value theory, we show that the maximal square extensions of convex hull vertices are well described by a classic extreme value distribution, the Gumbel distribution. During turbulent convection, intermittent convective plumes grow and accelerate the dispersion of Lagrangian tracers. Convex hull analysis yields information that supplements standard Lagrangian analysis of coherent turbulent structures and their influence on the global statistics of the flow.}, language = {en} }