@article{HartmannLeimkuehler2013, author = {Hartmann, Tobias and Leimk{\"u}hler, Silke}, title = {The oxygen-tolerant and NAD+-dependent formate dehydrogenase from Rhodobacter capsulatus is able to catalyze the reduction of CO2 to formate}, series = {The FEBS journal}, volume = {280}, journal = {The FEBS journal}, number = {23}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1742-464X}, doi = {10.1111/febs.12528}, pages = {6083 -- 6096}, year = {2013}, abstract = {The formate dehydrogenase from Rhodobactercapsulatus (RcFDH) is an oxygen-tolerant protein with an ()(2) subunit composition that is localized in the cytoplasm. It belongs to the group of metal and NAD(+)-dependent FDHs with the coordination of a molybdenum cofactor, four [Fe4S4] clusters and one [Fe2S2] cluster associated with the -subunit, one [Fe4S4] cluster and one FMN bound to the -subunit, and one [Fe2S2] cluster bound to the -subunit. RcFDH was heterologously expressed in Escherichiacoli and characterized. Cofactor analysis showed that the bis-molybdopterin guanine dinucleotide cofactor is bound to the FdsA subunit containing a cysteine ligand at the active site. A turnover rate of 2189min(-1) with formate as substrate was determined. The back reaction for the reduction of CO2 was catalyzed with a k(cat) of 89min(-1). The preference for formate oxidation shows an energy barrier for CO2 reduction of the enzyme. Furthermore, the FMN-containing and [Fe4S4]-containing -subunit together with the [Fe2S2]-containing -subunit forms a diaphorase unit with activities for both NAD(+) reduction and NADH oxidation. In addition to the structural genes fdsG, fdsB, and fdsA, the fds operon in R.capsulatus contains the fdsC and fdsD genes. Expression studies showed that RcFDH is only active when both FdsC and FdsD are present. Both proteins are proposed to be involved in bis-molybdopterin guanine dinucleotide modification and insertion into RcFDH.}, language = {en} } @misc{Leimkuehler2020, author = {Leimk{\"u}hler, Silke}, title = {The biosynthesis of the molybdenum cofactors in Escherichia coli}, series = {Environmental microbiology}, volume = {22}, journal = {Environmental microbiology}, number = {6}, publisher = {Wiley}, address = {Hoboken}, issn = {1462-2912}, doi = {10.1111/1462-2920.15003}, pages = {2007 -- 2026}, year = {2020}, abstract = {The biosynthesis of the molybdenum cofactor (Moco) is highly conserved among all kingdoms of life. In all molybdoenzymes containing Moco, the molybdenum atom is coordinated to a dithiolene group present in the pterin-based 6-alkyl side chain of molybdopterin (MPT). In general, the biosynthesis of Moco can be divided into four steps in in bacteria: (i) the starting point is the formation of the cyclic pyranopterin monophosphate (cPMP) from 5 '-GTP, (ii) in the second step the two sulfur atoms are inserted into cPMP leading to the formation of MPT, (iii) in the third step the molybdenum atom is inserted into MPT to form Moco and (iv) in the fourth step bis-Mo-MPT is formed and an additional modification of Moco is possible with the attachment of a nucleotide (CMP or GMP) to the phosphate group of MPT, forming the dinucleotide variants of Moco. This review presents an update on the well-characterized Moco biosynthesis in the model organism Escherichia coli including novel discoveries from the recent years.}, language = {en} } @misc{Leimkuehler2020, author = {Leimk{\"u}hler, Silke}, title = {The biosynthesis of the molybdenum cofactors in Escherichia coli}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {6}, issn = {1866-8372}, doi = {10.25932/publishup-51655}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-516559}, pages = {22}, year = {2020}, abstract = {The biosynthesis of the molybdenum cofactor (Moco) is highly conserved among all kingdoms of life. In all molybdoenzymes containing Moco, the molybdenum atom is coordinated to a dithiolene group present in the pterin-based 6-alkyl side chain of molybdopterin (MPT). In general, the biosynthesis of Moco can be divided into four steps in in bacteria: (i) the starting point is the formation of the cyclic pyranopterin monophosphate (cPMP) from 5 '-GTP, (ii) in the second step the two sulfur atoms are inserted into cPMP leading to the formation of MPT, (iii) in the third step the molybdenum atom is inserted into MPT to form Moco and (iv) in the fourth step bis-Mo-MPT is formed and an additional modification of Moco is possible with the attachment of a nucleotide (CMP or GMP) to the phosphate group of MPT, forming the dinucleotide variants of Moco. This review presents an update on the well-characterized Moco biosynthesis in the model organism Escherichia coli including novel discoveries from the recent years.}, language = {en} }