@article{AbdallaAharonianBenkhalietal.2019, author = {Abdalla, Hassan E. and Aharonian, Felix A. and Benkhali, F. Ait and Ang{\"u}ner, Ekrem Oǧuzhan and Arakawa, M. and Arcaro, C. and Armand, C. and Arrieta, M. and Backes, M. and Barnard, M. and Becherini, Y. and Tjus, J. Becker and Berge, D. and Bernloehr, K. and Blackwell, R. and Bottcher, M. and Boisson, C. and Bolmont, J. and Bonnefoy, S. and Bordas, Pol and Bregeon, J. and Brun, F. and Brun, P. and Bryan, M. and Buechele, M. and Bulik, T. and Bylund, T. and Capasso, M. and Caroff, S. and Carosi, A. and Casanova, Sabrina and Cerruti, M. and Chakraborty, N. and Chand, T. and Chandra, S. and Chaves, R. C. G. and Chen, A. and Colafrancesco, S. and Condon, B. and Davids, I. D. and Deil, C. and Devin, J. and deWilt, P. and Dirson, L. and Djannati-Atai, A. and Dmytriiev, A. and Donath, A. and Doroshenko, V and Dyks, J. and Egberts, Kathrin and Emery, G. and Ernenwein, J-P and Eschbach, S. and Fegan, S. and Fiasson, A. and Fontaine, G. and Funk, S. and Fuessling, M. and Gabici, S. and Gallant, Y. A. and Gate, F. and Giavitto, G. and Glawion, D. and Glicenstein, J. F. and Gottschall, D. and Grondin, M-H and Hahn, J. and Haupt, M. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hinton, James Anthony and Hofmann, W. and Hoischen, Clemens and Holch, Tim Lukas and Holler, M. and Horns, D. and Huber, D. and Iwasaki, H. and Jacholkowska, A. and Jamrozy, M. and Jankowsky, D. and Jankowsky, F. and Jouvin, L. and Jung-Richardt, I and Kastendieck, M. A. and Katarzynski, K. and Katsuragawa, M. and Katz, U. and Kerszberg, D. and Khangulyan, D. and Khelifi, B. and King, J. and Klepser, S. and Kluzniak, W. and Komin, Nu and Kosack, K. and Kraus, M. and Lamanna, G. and Lau, J. and Lefaucheur, J. and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J-P and Leser, Eva and Lohse, T. and Lopez-Coto, R. and Lypova, I and Malyshev, D. and Marandon, V and Marcowith, Alexandre and Mariaud, C. and Marti-Devesa, G. and Marx, R. and Maurin, G. and Meintjes, P. J. and Mitchell, A. M. W. and Moderski, R. and Mohamed, M. and Mohrmann, L. and Moore, C. and Moulin, Emmanuel and Murach, T. and Nakashima, S. and de Naurois, M. and Ndiyavala, H. and Niederwanger, F. and Niemiec, J. and Oakes, L. and Odaka, H. and Ohm, S. and Ostrowski, M. and Oya, I and Panter, M. and Parsons, R. D. and Perennes, C. and Petrucci, P-O and Peyaud, B. and Piel, Q. and Pita, S. and Poireau, V and Noel, A. Priyana and Prokhorov, D. A. and Prokoph, H. and Puehlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Rauth, R. and Reimer, A. and Reimer, O. and Renaud, M. and Rieger, F. and Rinchiuso, L. and Romoli, C. and Rowell, G. and Rudak, B. and Ruiz-Velasco, E. and Sahakian, V and Saito, S. and Sanchez, David M. and Santangelo, A. and Sasaki, M. and Schlickeiser, R. and Schussler, F. and Schulz, A. and Schutte, H. and Schwanke, U. and Schwemmer, S. and Seglar-Arroyo, M. and Senniappan, M. and Seyffert, A. S. and Shafi, N. and Shilon, I and Shiningayamwe, K. and Simoni, R. and Sinha, A. and Sol, H. and Specovius, A. and Spir-Jacob, M. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Steppa, Constantin Beverly and Takahashi, T. and Tavernet, J-P and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tibaldo, L. and Tiziani, D. and Tluczykont, M. and Trichard, C. and Tsirou, M. and Tsuji, N. and Tuffs, R. and Uchiyama, Y. and van der Walt, D. J. and van Eldik, C. and van Rensburg, C. and van Soelen, B. and Vasileiadis, G. and Veh, J. and Venter, C. and Vincent, P. and Vink, J. and Voisin, F. and Voelk, H. J. and Vuillaume, T. and Wadiasingh, Z. and Wagner, S. J. and Wagner, R. M. and White, R. and Wierzcholska, A. and Yang, R. and Yoneda, H. and Zaborov, D. and Zacharias, M. and Zanin, R. and Zdziarski, A. A. and Zech, Alraune and Zefi, F. and Ziegler, A. and Zorn, J. and Zywucka, N.}, title = {Particle transport within the pulsar wind nebula HESS J1825-137}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {621}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {HESS Collaboration}, issn = {1432-0746}, doi = {10.1051/0004-6361/201834335}, pages = {18}, year = {2019}, abstract = {Context. We present a detailed view of the pulsar wind nebula (PWN) HESS J1825-137. We aim to constrain the mechanisms dominating the particle transport within the nebula, accounting for its anomalously large size and spectral characteristics. Aims. The nebula was studied using a deep exposure from over 12 years of H.E.S.S. I operation, together with data from H.E.S.S. II that improve the low-energy sensitivity. Enhanced energy-dependent morphological and spatially resolved spectral analyses probe the very high energy (VHE, E > 0.1 TeV) gamma-ray properties of the nebula. Methods. The nebula emission is revealed to extend out to 1.5 degrees from the pulsar, similar to 1.5 times farther than previously seen, making HESS J1825-137, with an intrinsic diameter of similar to 100 pc, potentially the largest gamma-ray PWN currently known. Characterising the strongly energy-dependent morphology of the nebula enables us to constrain the particle transport mechanisms. A dependence of the nebula extent with energy of R proportional to E alpha with alpha = -0.29 +/- 0.04(stat) +/- 0.05(sys) disfavours a pure diffusion scenario for particle transport within the nebula. The total gamma-ray flux of the nebula above 1 TeV is found to be (1.12 +/- 0.03(stat) +/- 0.25(sys)) +/- 10(-11) cm(-2) s(-1), corresponding to similar to 64\% of the flux of the Crab nebula. Results. HESS J1825-137 is a PWN with clearly energy-dependent morphology at VHE gamma-ray energies. This source is used as a laboratory to investigate particle transport within intermediate-age PWNe. Based on deep observations of this highly spatially extended PWN, we produce a spectral map of the region that provides insights into the spectral variation within the nebula.}, language = {en} } @article{CaiToetzkeKaestneretal.2022, author = {Cai, Gaochao and T{\"o}tzke, Christian and Kaestner, Anders and Ahmed, Mutez Ali}, title = {Quantification of root water uptake and redistribution using neutron imaging: a review and future directions}, series = {The plant journal}, volume = {111}, journal = {The plant journal}, number = {2}, publisher = {Wiley-Blackwell}, address = {Oxford [u.a.]}, issn = {0960-7412}, doi = {10.1111/tpj.15839}, pages = {348 -- 359}, year = {2022}, abstract = {Quantifying root water uptake is essential to understanding plant water use and responses to different environmental conditions. However, non-destructive measurement of water transport and related hydraulics in the soil-root system remains a challenge. Neutron imaging, with its high sensitivity to hydrogen, has become an unparalleled tool to visualize and quantify root water uptake in vivo. In combination with isotopes (e.g., deuterated water) and a diffusion-convection model, root water uptake and hydraulic redistribution in root and soil can be quantified. Here, we review recent advances in utilizing neutron imaging to visualize and quantify root water uptake, hydraulic redistribution in roots and soil, and root hydraulic properties of different plant species. Under uniform soil moisture distributions, neutron radiographic studies have shown that water uptake was not uniform along the root and depended on both root type and age. For both tap (e.g., lupine [Lupinus albus L.]) and fibrous (e.g., maize [Zea mays L.]) root systems, water was mainly taken up through lateral roots. In mature maize, the location of water uptake shifted from seminal roots and their laterals to crown/nodal roots and their laterals. Under non-uniform soil moisture distributions, part of the water taken up during the daytime maintained the growth of crown/nodal roots in the upper, drier soil layers. Ultra-fast neutron tomography provides new insights into 3D water movement in soil and roots. We discuss the limitations of using neutron imaging and propose future directions to utilize neutron imaging to advance our understanding of root water uptake and soil-root interactions.}, language = {en} } @article{KaiserCacaceScheckWenderothetal.2011, author = {Kaiser, Bjoern Onno and Cacace, Mauro and Scheck-Wenderoth, Magdalena and Lewerenz, Bjoern}, title = {Characterization of main heat transport processes in the Northeast German Basin constraints from 3-D numerical models}, series = {Geochemistry, geophysics, geosystems}, volume = {12}, journal = {Geochemistry, geophysics, geosystems}, number = {13}, publisher = {American Geophysical Union}, address = {Washington}, issn = {1525-2027}, doi = {10.1029/2011GC003535}, pages = {17}, year = {2011}, abstract = {To investigate and quantify main physical heat driving processes affecting the present-day subsurface thermal field, we study a complex geological setting, the Northeast German Basin (NEGB). The internal geological structure of the NEGB is characterized by the presence of a relatively thick layer of Permian Zechstein salt (up to 5000 m), which forms many salt diapirs and pillows locally reaching nearly the surface. By means of three-dimensional numerical simulations we explore the role of heat conduction, pressure, and density driven groundwater flow as well as fluid viscosity related effects. Our results suggest that the regional temperature distribution within the basin results from interactions between regional pressure forces as driven by topographic gradients and thermal diffusion locally enhanced by thermal conductivity contrasts between the different sedimentary rocks with the highly conductive salt playing a prominent role. In contrast, buoyancy forces triggered by temperature-dependent fluid density variations are demonstrated to affect only locally the internal thermal configuration. Locations, geometry, and wavelengths of convective thermal anomalies are mainly controlled by the permeability field and thickness values of the respective geological layers.}, language = {en} } @article{RamiaramanantsoaRatnasingamShenaretal.2018, author = {Ramiaramanantsoa, Tahina and Ratnasingam, Rathish and Shenar, Tomer and Moffat, Anthony F. J. and Rogers, Tamara M. and Popowicz, Adam and Kuschnig, Rainer and Pigulski, Andrzej and Handler, Gerald and Wade, Gregg A. and Zwintz, Konstanze and Weiss, Werner W.}, title = {A BRITE view on the massive O-type supergiant V973 Scorpii}, series = {Monthly notices of the Royal Astronomical Society}, volume = {480}, journal = {Monthly notices of the Royal Astronomical Society}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/sty1897}, pages = {972 -- 986}, year = {2018}, abstract = {Stochastically triggered photospheric light variations reaching similar to 40 mmag peak-to-valley amplitudes have been detected in the O8 Iaf supergiant V973 Scorpii as the outcome of 2 months of high-precision time-resolved photometric observations with the BRIght Target Explorer (BRITE) nanosatellites. The amplitude spectrum of the time series photometry exhibits a pronounced broad bump in the low-frequency regime (less than or similar to 0.9 d(-1)) where several prominent frequencies are detected. A time-frequency analysis of the observations reveals typical mode lifetimes of the order of 5-10 d. The overall features of the observed brightness amplitude spectrum of V973 Sco match well with those extrapolated from two-dimensional hydrodynamical simulations of convectively driven internal gravity waves randomly excited from deep in the convective cores of massive stars. An alternative or additional possible source of excitation from a sub-surface convection zone needs to be explored in future theoretical investigations.}, language = {en} } @article{RohrmannStreckerBookhagenetal.2014, author = {Rohrmann, Alexander and Strecker, Manfred and Bookhagen, Bodo and Mulch, Andreas and Sachse, Dirk and Pingel, Heiko and Alonso, Ricardo N. and Schildgen, Taylor F. and Montero, Carolina}, title = {Can stable isotopes ride out the storms? The role of convection for water isotopes in models, records, and paleoaltimetry studies in the central Andes}, series = {Earth \& planetary science letters}, volume = {407}, journal = {Earth \& planetary science letters}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-821X}, doi = {10.1016/j.epsl.2014.09.021}, pages = {187 -- 195}, year = {2014}, language = {en} } @article{RuedigerKueker2021, author = {R{\"u}diger, G{\"u}nther and K{\"u}ker, Manfred}, title = {Angular momentum transport by magnetoconvection and the magnetic modulation of the solar differential rotation}, series = {Astronomy and astrophysics : an international weekly journal / European Southern Observatory (ESO)}, volume = {649}, journal = {Astronomy and astrophysics : an international weekly journal / European Southern Observatory (ESO)}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/202039912}, pages = {10}, year = {2021}, abstract = {In order to explain the variance of the solar rotation law during the activity minima and maxima, the angular momentum transport by rotating magnetoconvection is simulated in a convective box penetrated by an inclined azimuthal magnetic field. Turbulence-induced kinetic and magnetic stresses and the Lorentz force of the large-scale magnetic background field are the basic transporters of angular momentum. Without rotation, the sign of the magnetic stresses naturally depends on the signs of the field components as positive (negative) B theta B phi transport the angular momentum poleward (equatorward). For fast enough rotation, however, the turbulence-originated Reynolds stresses start to dominate the transport of the angular momentum flux. The simulations show that positive ratios of the two meridional magnetic field components to the azimuthal field reduce the inward radial as well as the equatorward latitudinal transport, which result from hydrodynamic calculations. Only for B theta B phi>0 (generated by solar-type rotation laws with an accelerated equator) does the magnetic-influenced rotation at the solar surface prove to be flatter than the nonmagnetic profile together with the observed slight spin-down of the equator. The latter phenomenon does not appear for antisolar rotation with polar vortex as well as for rotation laws with prevailing radial shear.}, language = {en} } @article{RuedigerKuekerKapylaetal.2019, author = {R{\"u}diger, G{\"u}nther and K{\"u}ker, Manfred and Kapyla, P. J. and Strassmeier, Klaus G.}, title = {Antisolar differential rotation of slowly rotating cool stars}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {630}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201935280}, pages = {9}, year = {2019}, abstract = {Rotating stellar convection transports angular momentum towards the equator, generating the characteristic equatorial acceleration of the solar rotation while the radial flux of angular momentum is always inwards. New numerical box simulations for the meridional cross-correlation < u(theta)u(phi)>, however, reveal the angular momentum transport towards the poles for slow rotation and towards the equator for fast rotation. The explanation is that for slow rotation a negative radial gradient of the angular velocity always appears, which in combination with a so-far neglected rotation-induced off-diagonal eddy viscosity term nu(perpendicular to) provides "antisolar rotation" laws with a decelerated equator Similarly, the simulations provided positive values for the rotation-induced correlation < u(r)u(theta)>, which is relevant for the resulting latitudinal temperature profiles (cool or warm poles) for slow rotation and negative values for fast rotation. Observations of the differential rotation of slowly rotating stars will therefore lead to a better understanding of the actual stress-strain relation, the heat transport, and the underlying model of the rotating convection.}, language = {en} } @article{StedingKempkaKuehn2021, author = {Steding, Svenja and Kempka, Thomas and K{\"u}hn, Michael}, title = {How insoluble inclusions and intersecting layers affect the leaching process within potash seams}, series = {Applied Sciences : open access journal}, volume = {11}, journal = {Applied Sciences : open access journal}, number = {19}, publisher = {MDPI}, address = {Basel}, issn = {2076-3417}, doi = {10.3390/app11199314}, pages = {21}, year = {2021}, abstract = {Potash seams are a valuable resource containing several economically interesting, but also highly soluble minerals. In the presence of water, uncontrolled leaching can occur, endangering subsurface mining operations. In the present study, the influence of insoluble inclusions and intersecting layers on leaching zone evolution was examined by means of a reactive transport model. For that purpose, a scenario analysis was carried out, considering different rock distributions within a carnallite-bearing potash seam. The results show that reaction-dominated systems are not affected by heterogeneities at all, whereas transport-dominated systems exhibit a faster advance in homogeneous rock compositions. In return, the ratio of permeated rock in vertical direction is higher in heterogeneous systems. Literature data indicate that most natural potash systems are transport-dominated. Accordingly, insoluble inclusions and intersecting layers can usually be seen as beneficial with regard to reducing hazard potential as long as the mechanical stability of leaching zones is maintained. Thereby, the distribution of insoluble areas is of minor impact unless an inclined, intersecting layer occurs that accelerates leaching zone growth in one direction. Moreover, it is found that the saturation dependency of dissolution rates increases the growth rate in the long term, and therefore must be considered in risk assessments.}, language = {en} }