@article{KrolJaegerBronstertetal.2006, author = {Krol, Maarten and Jaeger, Annekathrin and Bronstert, Axel and G{\"u}ntner, Andreas}, title = {Integrated modelling of climate, water, soil, agricultural and socio-economic processes: A general introduction of the methodology and some exemplary results from the semi-arid north-east of Brazil}, series = {Journal of hydrology}, volume = {328}, journal = {Journal of hydrology}, number = {3-4}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0022-1694}, doi = {10.1016/j.jhydrol.2005.12.021}, pages = {417 -- 431}, year = {2006}, abstract = {Many semi-arid regions are characterised by water scarcity and vulnerability of natural resources, pronounced climatic variability and social stress. Integrated studies including climatotogy, hydrology, and socio-econornic studies are required both for analysing the dynamic natural conditions and to assess possible strategies to make semi-arid regions Less vulnerable to the present and changing climate. The model introduced here dynamically describes the retationships between climate forcing, water availability, agriculture and selected societal processes. The model has been tailored to simulate the rather complex situation in the semi-and north-eastern Brazil in a quantitative manner including the sensitivity to external forcing, such as climate change. The selected results presented show the general functioning of the integrated model, with a primary focus on climate change impacts. It becomes evident that due to Large differences in regional climate scenarios, it is still impossible to give quantitative values for the most probable development, e.g., to assign probabilities to the simulated results. However, it becomes clear that water is a very crucial factor, and that an efficient and ecologically sound water management is a key question for the further development of that semi-arid region. The simulation results show that, independent of the differences in climate change scenarios, rain-fed farming is more vulnerable to drought impacts compared to irrigated farming. However, the capacity of irrigation and other water infrastructure systems to enhance resilience in respect to climatic fluctuations is significantly constrained given a significant negative precipitation trend. (c) 2005 Elsevier B.V. All rights reserved.}, language = {en} } @misc{Koechy2006, author = {K{\"o}chy, Martin}, title = {Opposite trends in life stages of annual plants caused by daily rainfall variability}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-14699}, pages = {347 -- 357}, year = {2006}, abstract = {Global Circulation Models of climate predict not only a change of annual precipitation amounts but also a shift in the daily distribution. To improve the understanding of the importance of daily rain pattern for annual plant communities, which represent a large portion of semi-natural vegetation in the Middle East, I used a detailed, spatially explicit model. The model explicitly considers water storage in the soil and has been parameterized and validated with data collected in field experiments in Israel and data from the literature. I manipulated daily rainfall variability by increasing the mean daily rain intensity on rainy days (MDI, rain volume/day) and decreasing intervals between rainy days while keeping the mean annual amount constant. In factorial combination, I also increased mean annual precipitation (MAP). I considered five climatic regions characterized by 100, 300, 450, 600, and 800 mm MAP. Increasing MDI decreased establishment when MAP was >250 mm but increased establishment at more arid sites. The negative effect of increasing MDI was compensated by increasing mortality with increasing MDI in dry and typical Mediterranean regions (c. 360-720 mm MAP). These effects were strongly tied to water availability in upper and lower soil layers and modified by competition among seedlings and adults. Increasing MAP generally increased water availability, establishment, and density. The order of magnitudes of MDI and MAP effects overlapped partially so that their combined effect is important for projections of climate change effects on annual vegetation. The effect size of MAP and MDI followed a sigmoid curve along the MAP gradient indicating that the semi-arid region (≈300 mm MAP) is the most sensitive to precipitation change with regard to annual communitie}, subject = {Klima{\"a}nderung}, language = {en} } @misc{Koechy2006, author = {K{\"o}chy, Martin}, title = {Stochastic time series of daily precipitation for the interior of Israel}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-13155}, year = {2006}, abstract = {This contribution describes a generator of stochastic time series of daily precipitation for the interior of Israel from c. 90 to 900 mm mean annual precipitation (MAP) as a tool for studies of daily rain variability. The probability of rainfall on a given day of the year is described by a regular Gaussian peak curve function. The amount of rain is drawn randomly from an exponential distribution whose mean is the daily mean rain amount (averaged across years for each day of the year) described by a flattened Gaussian peak curve. Parameters for the curves have been calculated from monthly aggregated, long-term rain records from seven meteorological stations. Parameters for arbitrary points on the MAP gradient are calculated from a regression equation with MAP as the only independent variable. The simple structure of the generator allows it to produce time series with daily rain patterns that are projected under climate change scenarios and simultaneously control MAP. Increasing within-year variability of daily precipitation amounts also increases among-year variability of MAP as predicted by global circulation models. Thus, the time series incorporate important characteristics for climate change research and represent a flexible tool for simulations of daily vegetation or surface hydrology dynamics.}, language = {en} } @phdthesis{Post2006, author = {Post, Joachim}, title = {Integrated process-based simulation of soil carbon dynamics in river basins under present, recent past and future environmental conditions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-11507}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {Soils contain a large amount of carbon (C) that is a critical regulator of the global C budget. Already small changes in the processes governing soil C cycling have the potential to release considerable amounts of CO2, a greenhouse gas (GHG), adding additional radiative forcing to the atmosphere and hence to changing climate. Increased temperatures will probably create a feedback, causing soils to release more GHGs. Furthermore changes in soil C balance impact soil fertility and soil quality, potentially degrading soils and reducing soils function as important resource. Consequently the assessment of soil C dynamics under present, recent past and future environmental conditions is not only of scientific interest and requires an integrated consideration of main factors and processes governing soil C dynamics. To perform this assessment an eco-hydrological modelling tool was used and extended by a process-based description of coupled soil carbon and nitrogen turnover. The extended model aims at delivering sound information on soil C storage changes beside changes in water quality, quantity and vegetation growth under global change impacts in meso- to macro-scale river basins, exemplary demonstrated for a Central European river basin (the Elbe). As a result this study: ▪ Provides information on joint effects of land-use (land cover and land management) and climate changes on croplands soil C balance in the Elbe river basin (Central Europe) presently and in the future. ▪ Evaluates which processes, and at what level of process detail, have to be considered to perform an integrated simulation of soil C dynamics at the meso- to macro-scale and demonstrates the model's capability to simulate these processes compared to observations. ▪ Proposes a process description relating soil C pools and turnover properties to readily measurable quantities. This reduces the number of model parameters, enhances the comparability of model results to observations, and delivers same performance simulating long-term soil C dynamics as other models. ▪ Presents an extensive assessment of the parameter and input data uncertainty and their importance both temporally and spatially on modelling soil C dynamics. For the basin scale assessments it is estimated that croplands in the Elbe basin currently act as a net source of carbon (net annual C flux of 11 g C m-2 yr-1, 1.57 106 tons CO2 yr-1 entire croplands on average). Although this highly depends on the amount of harvest by-products remaining on the field. Future anticipated climate change and observed climate change in the basin already accelerates soil C loss and increases source strengths (additional 3.2 g C m-2 yr-1, 0.48 106 tons CO2 yr-1 entire croplands). But anticipated changes of agro-economic conditions, translating to altered crop share distributions, display stronger effects on soil C storage than climate change. Depending on future use of land expected to fall out of agricultural use in the future (~ 30 \% of croplands area as "surplus" land), the basin either considerably looses soil C and the net annual C flux to the atmosphere increases (surplus used as black fallow) or the basin converts to a net sink of C (sequestering 0.44 106 tons CO2 yr-1 under extensified use as ley-arable) or reacts with decrease in source strength when using bioenergy crops. Bioenergy crops additionally offer a considerable potential for fossil fuel substitution (~37 PJ, 1015 J per year), whereas the basin wide use of harvest by-products for energy generation has to be seen critically although offering an annual energy potential of approximately 125 PJ. Harvest by-products play a central role in soil C reproduction and a percentage between 50 and 80 \% should remain on the fields in order to maintain soil quality and fertility. The established modelling tool allows quantifying climate, land use and major land management impacts on soil C balance. New is that the SOM turnover description is embedded in an eco-hydrological river basin model, allowing an integrated consideration of water quantity, water quality, vegetation growth, agricultural productivity and soil carbon changes under different environmental conditions. The methodology and assessment presented here demonstrates the potential for integrated assessment of soil C dynamics alongside with other ecosystem services under global change impacts and provides information on the potentials of soils for climate change mitigation (soil C sequestration) and on their soil fertility status.}, subject = {Kohlenstoff}, language = {en} }