@article{LachmannMettlerAltmannWackeretal.2019, author = {Lachmann, Sabrina C. and Mettler-Altmann, Tabea and Wacker, Alexander and Spijkerman, Elly}, title = {Nitrate or ammonium}, series = {Ecology and evolution}, volume = {9}, journal = {Ecology and evolution}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {2045-7758}, doi = {10.1002/ece3.4790}, pages = {13}, year = {2019}, abstract = {In freshwaters, algal species are exposed to different inorganic nitrogen (Ni) sources whose incorporation varies in biochemical energy demand. We hypothesized that due to the lesser energy requirement of ammonium (NH4+)-use, in contrast to nitrate (NO3-)-use, more energy remains for other metabolic processes, especially under CO2-and phosphorus (Pi) limiting conditions. Therefore, we tested differences in cell characteristics of the green alga Chlamydomonas acidophila grown on NH4+ or NO3- under covariation of CO2 and Pi-supply in order to determine limitations, in a full-factorial design. As expected, results revealed higher carbon fixation rates for NH4+ grown cells compared to growth with NO3- under low CO2 conditions. NO3- -grown cells accumulated more of the nine analyzed amino acids, especially under Pi-limited conditions, compared to cells provided with NH4+. This is probably due to a slower protein synthesis in cells provided with NO3-. In contrast to our expectations, compared to NH4+ -grown cells NO3- -grown cells had higher photosynthetic efficiency under Pi-limitation. In conclusion, growth on the Ni-source NH4+ did not result in a clearly enhanced Ci-assimilation, as it was highly dependent on Pi and CO2 conditions (replete or limited). Results are potentially connected to the fact that C. acidophila is able to use only CO2 as its inorganic carbon (Ci) source.}, language = {en} } @article{ShiXieQietal.2019, author = {Shi, Jiang and Xie, Dongchao and Qi, Dandan and Peng, Qunhua and Chen, Zongmao and Schreiner, Monika and Lin, Zhi and Baldermann, Susanne}, title = {Methyl jasmonate-induced changes of flavor profiles during the processing of Green, Oolong, and Black Tea}, series = {Frontiers in plant science}, volume = {10}, journal = {Frontiers in plant science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2019.00781}, pages = {13}, year = {2019}, abstract = {Tea aroma is one of the most important factors affecting the character and quality of tea. Here we describe the practical application of methyl jasmonate (MeJA) to improve the aroma quality of teas. The changes of selected metabolites during crucial tea processing steps, namely, withering, fixing and rolling, and fermentation, were analyzed. MeJA treatment of tea leaves (12, 24, 48, and 168 h) greatly promotes the aroma quality of green, oolong, and black tea products when comparing with untreated ones (0 h) and as confirmed by sensory evaluation. MeJA modulates the aroma profiles before, during, and after processing. Benzyl alcohol, benzaldehyde, 2-phenylethyl alcohol, phenylacetaldehyde, and trans-2-hexenal increased 1.07- to 3-fold in MeJA-treated fresh leaves and the first two maintained at a higher level in black tea and the last two in green tea. This correlates with a decrease in aromatic amino acids by more than twofold indicating a direct relation to tryptophan- and phenylalanine-derived volatiles. MeJA-treated oolong tea was characterized by a more pleasant aroma. Especially the terpenoids linalool and oxides, geraniol, and carvenol increased by more than twofold.}, language = {en} }