@phdthesis{Parry2023, author = {Parry, Victor}, title = {From individual to community level: Assessing swimming movement, dispersal and fitness of zooplankton}, doi = {10.25932/publishup-59769}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-597697}, school = {Universit{\"a}t Potsdam}, pages = {ix, 118}, year = {2023}, abstract = {Movement is a mechanism that shapes biodiversity patterns across spatialtemporal scales. Thereby, the movement process affects species interactions, population dynamics and community composition. In this thesis, I disentangled the effects of movement on the biodiversity of zooplankton ranging from the individual to the community level. On the individual movement level, I used video-based analysis to explore the implication of movement behavior on preypredator interactions. My results showed that swimming behavior was of great importance as it determined their survival in the face of predation. The findings also additionally highlighted the relevance of the defense status/morphology of prey, as it not only affected the prey-predator relationship by the defense itself but also by plastic movement behavior. On the community movement level, I used a field mesocosm experiment to explore the role of dispersal (time i.e., from the egg bank into the water body and space i.e., between water bodies) in shaping zooplankton metacommunities. My results revealed that priority effects and taxon-specific dispersal limitation influenced community composition. Additionally, different modes of dispersal also generated distinct community structures. The egg bank and biotic vectors (i.e. mobile links) played significant roles in the colonization of newly available habitat patches. One crucial aspect that influences zooplankton species after arrival in new habitats is the local environmental conditions. By using common garden experiments, I assessed the performance of zooplankton communities in their home vs away environments in a group of ponds embedded within an agricultural landscape. I identified environmental filtering as a driving factor as zooplankton communities from individual ponds developed differently in their home and away environments. On the individual species level, there was no consistent indication of local adaptation. For some species, I found a higher abundance/fitness in their home environment, but for others, the opposite was the case, and some cases were indifferent. Overall, the thesis highlights the links between movement and biodiversity patterns, ranging from the individual active movement to the community level.}, language = {en} }