@article{HasnatZupokOlasApeltetal.2021, author = {Hasnat, Muhammad Abrar and Zupok, Arkadiusz and Olas-Apelt, Justyna Jadwiga and M{\"u}ller-R{\"o}ber, Bernd and Leimk{\"u}hler, Silke}, title = {A-type carrier proteins are involved in [4Fe-4S] cluster insertion into the radical S-adenosylmethionine protein MoaA for the synthesis of active molybdoenzymes}, series = {Journal of bacteriology}, volume = {203}, journal = {Journal of bacteriology}, number = {12}, publisher = {American Society for Microbiology}, address = {Washington}, issn = {1098-5530}, doi = {10.1128/JB.00086-21}, pages = {20}, year = {2021}, abstract = {Iron sulfur (Fe-S) clusters are important biological cofactors present in proteins with crucial biological functions, from photosynthesis to DNA repair, gene expression, and bioenergetic processes. For the insertion of Fe-S clusters into proteins, A-type carrier proteins have been identified. So far, three of them have been characterized in detail in Escherichia coli, namely, IscA, SufA, and ErpA, which were shown to partially replace each other in their roles in [4Fe-4S] cluster insertion into specific target proteins. To further expand the knowledge of [4Fe-4S] cluster insertion into proteins, we analyzed the complex Fe-S cluster-dependent network for the synthesis of the molybdenum cofactor (Moco) and the expression of genes encoding nitrate reductase in E. coli. Our studies include the identification of the A-type carrier proteins ErpA and IscA, involved in [4Fe-4S] cluster insertion into the radical Sadenosyl-methionine (SAM) enzyme MoaA. We show that ErpA and IscA can partially replace each other in their role to provide [4Fe-4S] clusters for MoaA. Since most genes expressing molybdoenzymes are regulated by the transcriptional regulator for fumarate and nitrate reduction (FNR) under anaerobic conditions, we also identified the proteins that are crucial to obtain an active FNR under conditions of nitrate respiration. We show that ErpA is essential for the FNR-dependent expression of the narGHJI operon, a role that cannot be compensated by IscA under the growth conditions tested. SufA does not appear to have a role in Fe-S cluster insertion into MoaA or FNR under anaerobic growth employing nitrate respiration, based on the low level of gene expression.
IMPORTANCE Understanding the assembly of iron-sulfur (Fe-S) proteins is relevant to many fields, including nitrogen fixation, photosynthesis, bioenergetics, and gene regulation. Remaining critical gaps in our knowledge include how Fe-S clusters are transferred to their target proteins and how the specificity in this process is achieved, since different forms of Fe-S clusters need to be delivered to structurally highly diverse target proteins. Numerous Fe-S carrier proteins have been identified in prokaryotes like Escherichia coli, including ErpA, IscA, SufA, and NfuA. In addition, the diverse Fe-S cluster delivery proteins and their target proteins underlie a complex regulatory network of expression, to ensure that both proteins are synthesized under particular growth conditions.}, language = {en} } @article{MendelHercherZupoketal.2020, author = {Mendel, Ralf R. and Hercher, Thomas W. and Zupok, Arkadiusz and Hasnat, Muhammad Abrar and Leimk{\"u}hler, Silke}, title = {The requirement of inorganic Fe-S clusters for the biosynthesis of the organometallic molybdenum cofactor}, series = {Inorganics : open access journal}, volume = {8}, journal = {Inorganics : open access journal}, number = {7}, publisher = {MDPI}, address = {Basel}, issn = {2304-6740}, doi = {10.3390/inorganics8070043}, pages = {23}, year = {2020}, abstract = {Iron-sulfur (Fe-S) clusters are essential protein cofactors. In enzymes, they are present either in the rhombic [2Fe-2S] or the cubic [4Fe-4S] form, where they are involved in catalysis and electron transfer and in the biosynthesis of metal-containing prosthetic groups like the molybdenum cofactor (Moco). Here, we give an overview of the assembly of Fe-S clusters in bacteria and humans and present their connection to the Moco biosynthesis pathway. In all organisms, Fe-S cluster assembly starts with the abstraction of sulfur froml-cysteine and its transfer to a scaffold protein. After formation, Fe-S clusters are transferred to carrier proteins that insert them into recipient apo-proteins. In eukaryotes like humans and plants, Fe-S cluster assembly takes place both in mitochondria and in the cytosol. Both Moco biosynthesis and Fe-S cluster assembly are highly conserved among all kingdoms of life. Moco is a tricyclic pterin compound with molybdenum coordinated through its unique dithiolene group. Moco biosynthesis begins in the mitochondria in a Fe-S cluster dependent step involving radical/S-adenosylmethionine (SAM) chemistry. An intermediate is transferred to the cytosol where the dithiolene group is formed, to which molybdenum is finally added. Further connections between Fe-S cluster assembly and Moco biosynthesis are discussed in detail.}, language = {en} } @phdthesis{Ogunkola2023, author = {Ogunkola, Moses}, title = {Role of the tRNA thiouridine modification protein (TUM1) as a sulfurtransferase in humans}, doi = {10.25932/publishup-61135}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-611357}, school = {Universit{\"a}t Potsdam}, pages = {XII, 82}, year = {2023}, abstract = {Sulfur is essential for the functionality of some important biomolecules in humans. Biomolecules like the Iron-sulfur clusters, tRNAs, Molybdenum cofactor, and some vitamins. The trafficking of sulfur involves proteins collectively called sulfurtransferase. Among these are TUM1, MOCS3, and NFS1. This research investigated the role of TUM1 for molybdenum cofactor biosynthesis and cytosolic tRNA thiolation in humans. The rhodanese-like protein MOCS3 and the L-cysteine desulfurase (NFS1) have been previously demonstrated to interact with TUM1. These interactions suggested a dual function of TUM1 in sulfur transfer for Moco biosynthesis and cytosolic tRNA thiolation. TUM1 deficiency has been implicated to be responsible for a rare inheritable disorder known as mercaptolactate cysteine disulfiduria (MCDU), which is associated with a mental disorder. This mental disorder is similar to the symptoms of sulfite oxidase deficiency which is characterised by neurological disorders. Therefore, the role of TUM1 as a sulfurtransferase in humans was investigated, in CRISPR/Cas9 generated TUM1 knockout HEK 293T cell lines. For the first time, TUM1 was implicated in Moco biosynthesis in humans by quantifying the intermediate product cPMP and Moco using HPLC. Comparing the TUM1 knockout cell lines to the wild-type, accumulation and reduction of cPMP and Moco were observed respectively. The effect of TUM1 knockout on the activity of a Moco-dependent enzyme, Sulfite oxidase, was also investigated. Sulfite oxidase is essential for the detoxification of sulfite to sulfate. Sulfite oxidase activity and protein abundance were reduced due to less availability of Moco. This shows that TUM1 is essential for efficient sulfur transfer for Moco biosynthesis. Reduction in cystathionin -lyase in TUM1 knockout cells was quantified, a possible coping mechanism of the cell against sulfite production through cysteine catabolism. Secondly, the involvement of TUM1 in tRNA thio-modification at the wobble Uridine-34 was reported by quantifying the amount of mcm5s2U and mcm5U via HPLC. The reduction and accumulation of mcm5s2U and mcm5U in TUM1 knockout cells were observed in the nucleoside analysis. Herein, exogenous treatment with NaHS, a hydrogen sulfide donor, rescued the Moco biosynthesis, cytosolic tRNA thiolation, and cell proliferation deficits in TUM1 knockout cells. Further, TUM1 was shown to impact mitochondria bioenergetics through the measurement of the oxygen consumption rate and extracellular acidification rate (ECAR) via the seahorse cell Mito stress analyzer. Reduction in total ATP production was also measured. This reveals how important TUM1 is for H2S biosynthesis in the mitochondria of HEK 293T. Finally, the inhibition of NFS1 in HEK 293T and purified NFS1 protein by 2-methylene 3-quinuclidinone was demonstrated via spectrophotometric and radioactivity quantification. Inhibition of NFS1 by MQ further affected the iron-sulfur cluster-dependent enzyme aconitase activity.}, language = {en} } @article{OgunkolaGuiraudieCaprazFeronetal.2023, author = {Ogunkola, Moses Olalekan and Guiraudie-Capraz, Gaelle and F{\´e}ron, Fran{\c{c}}ois and Leimk{\"u}hler, Silke}, title = {The Human Mercaptopyruvate Sulfurtransferase TUM1 Is Involved in Moco Biosynthesis, Cytosolic tRNA Thiolation and Cellular Bioenergetics in Human Embryonic Kidney Cells}, series = {Biomolecules}, volume = {13}, journal = {Biomolecules}, edition = {1}, publisher = {MDPI}, address = {Basel, Schweiz}, issn = {2218-273X}, doi = {10.3390/biom13010144}, pages = {1 -- 23}, year = {2023}, abstract = {Sulfur is an important element that is incorporated into many biomolecules in humans. The incorporation and transfer of sulfur into biomolecules is, however, facilitated by a series of different sulfurtransferases. Among these sulfurtransferases is the human mercaptopyruvate sulfurtransferase (MPST) also designated as tRNA thiouridine modification protein (TUM1). The role of the human TUM1 protein has been suggested in a wide range of physiological processes in the cell among which are but not limited to involvement in Molybdenum cofactor (Moco) biosynthesis, cytosolic tRNA thiolation and generation of H2S as signaling molecule both in mitochondria and the cytosol. Previous interaction studies showed that TUM1 interacts with the L-cysteine desulfurase NFS1 and the Molybdenum cofactor biosynthesis protein 3 (MOCS3). Here, we show the roles of TUM1 in human cells using CRISPR/Cas9 genetically modified Human Embryonic Kidney cells. Here, we show that TUM1 is involved in the sulfur transfer for Molybdenum cofactor synthesis and tRNA thiomodification by spectrophotometric measurement of the activity of sulfite oxidase and liquid chromatography quantification of the level of sulfur-modified tRNA. Further, we show that TUM1 has a role in hydrogen sulfide production and cellular bioenergetics.}, language = {en} } @misc{OgunkolaGuiraudieCaprazFeronetal.2023, author = {Ogunkola, Moses Olalekan and Guiraudie-Capraz, Gaelle and F{\´e}ron, Fran{\c{c}}ois and Leimk{\"u}hler, Silke}, title = {The Human Mercaptopyruvate Sulfurtransferase TUM1 Is Involved in Moco Biosynthesis, Cytosolic tRNA Thiolation and Cellular Bioenergetics in Human Embryonic Kidney Cells}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1307}, issn = {1866-8372}, doi = {10.25932/publishup-57958}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-579580}, pages = {23}, year = {2023}, abstract = {Sulfur is an important element that is incorporated into many biomolecules in humans. The incorporation and transfer of sulfur into biomolecules is, however, facilitated by a series of different sulfurtransferases. Among these sulfurtransferases is the human mercaptopyruvate sulfurtransferase (MPST) also designated as tRNA thiouridine modification protein (TUM1). The role of the human TUM1 protein has been suggested in a wide range of physiological processes in the cell among which are but not limited to involvement in Molybdenum cofactor (Moco) biosynthesis, cytosolic tRNA thiolation and generation of H2S as signaling molecule both in mitochondria and the cytosol. Previous interaction studies showed that TUM1 interacts with the L-cysteine desulfurase NFS1 and the Molybdenum cofactor biosynthesis protein 3 (MOCS3). Here, we show the roles of TUM1 in human cells using CRISPR/Cas9 genetically modified Human Embryonic Kidney cells. Here, we show that TUM1 is involved in the sulfur transfer for Molybdenum cofactor synthesis and tRNA thiomodification by spectrophotometric measurement of the activity of sulfite oxidase and liquid chromatography quantification of the level of sulfur-modified tRNA. Further, we show that TUM1 has a role in hydrogen sulfide production and cellular bioenergetics.}, language = {en} }