@phdthesis{DeCahsan, author = {De Cahsan, Binia}, title = {Introgressive hybridization in northern range margin populations of the European fire-bellied toad (Bombina bombina)}, address = {Potsdam}, school = {Universit{\"a}t Potsdam}, pages = {108}, abstract = {The European fire-bellied toad (Bombina bombina) is regarded as one of the most threatened species of amphibians in central Europe and is particularly affected by environmental perturbations. During the last decades population numbers in Germany have declined drastically due to pollution, eutrophication and habitat fragmentation. Illegal translocations resulted in an introgression from southern genotypes (probably Austrian) into three local Bombina populations (Northern Germany and Southern Sweden) belonging to the northern lineage of the species. Interestingly, these populations show high frequencies of allochthonous (non-local) alleles at multiple loci and outperform the autochthonous populations in terms of their body condition. Over a time period of ten years, I could show that the Southern lineage haplo- and genotypes are still present in the North and that frequencies of introgressed haplotypes in allochthonous populations did not increase over time. However, the introgression itself expanded towards adjacent populations while the overall haplotype diversity has decreased. In contrast, southern lineage genotypes for two candidate genes under selection, the (immunity) MHC class II gene, as well as the (temperature) stress response HSP70 kDa gene, either do not occur at all or only at low frequencies in northern populations. Furthermore, these alleles do not seem to follow the introgression pattern, as they are also present in non-introgressed populations. This thesis tested two possible outcomes of introgressive hybridization in Northern B. bombina populations: (1) local populations (autochthonous) of Bombina bombina are highly adapted to their environments so that introgression of alien genes causes outbreeding depression or (2) local populations of Bombina bombina potentially lack adaptive variation so that introgression of alien genes causes genetic rescue and promotes adaptive change. I found that this unintentional experiment, as a result of illegal translocations imitating introgression of alien genes coming from a southern population (potentially adapted to warmer climate) into a northern lineage (potentially adapted to local pathogens), has increased the genetic diversity and improved fitness in introgressed northern populations, without disrupting local adaptation in the threatened amphibian species B. bombina, favouring the genetic rescue hypothesis. These results and conclusions represent relevant information for future conservation plans, including supportive breeding programmes for fire-bellied toads in Northern Germany and Southern Sweden.}, language = {en} } @phdthesis{Schauer2006, author = {Schauer, Nicolas}, title = {Quantitative trait loci (QTL) for metabolite accumulation and metabolic regulation : metabolite profiling of interspecific crosses of tomato}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-7643}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {The advent of large-scale and high-throughput technologies has recently caused a shift in focus in contemporary biology from decades of reductionism towards a more systemic view. Alongside the availability of genome sequences the exploration of organisms utilizing such approach should give rise to a more comprehensive understanding of complex systems. Domestication and intensive breeding of crop plants has led to a parallel narrowing of their genetic basis. The potential to improve crops by conventional breeding using elite cultivars is therefore rather limited and molecular technologies, such as marker assisted selection (MAS) are currently being exploited to re-introduce allelic variance from wild species. Molecular breeding strategies have mostly focused on the introduction of yield or resistance related traits to date. However given that medical research has highlighted the importance of crop compositional quality in the human diet this research field is rapidly becoming more important. Chemical composition of biological tissues can be efficiently assessed by metabolite profiling techniques, which allow the multivariate detection of metabolites of a given biological sample. Here, a GC/MS metabolite profiling approach has been applied to investigate natural variation of tomatoes with respect to the chemical composition of their fruits. The establishment of a mass spectral and retention index (MSRI) library was a prerequisite for this work in order to establish a framework for the identification of metabolites from a complex mixture. As mass spectral and retention index information is highly important for the metabolomics community this library was made publicly available. Metabolite profiling of tomato wild species revealed large differences in the chemical composition, especially of amino and organic acids, as well as on the sugar composition and secondary metabolites. Intriguingly, the analysis of a set of S. pennellii introgression lines (IL) identified 889 quantitative trait loci of compositional quality and 326 yield-associated traits. These traits are characterized by increases/decreases not only of single metabolites but also of entire metabolic pathways, thus highlighting the potential of this approach in uncovering novel aspects of metabolic regulation. Finally the biosynthetic pathway of the phenylalanine-derived fruit volatiles phenylethanol and phenylacetaldehyde was elucidated via a combination of metabolic profiling of natural variation, stable isotope tracer experiments and reverse genetic experimentation.}, subject = {Tomate}, language = {en} }