@article{EvsevleevMishurovaCabezaetal.2018, author = {Evsevleev, Sergei and Mishurova, Tatiana and Cabeza, Sandra and Koos, R. and Sevostianov, Igor and Garc{\´e}s, Gonzales and Requena, Guillermo and Fernandez, R. and Bruno, Giovanni}, title = {The role of intermetallics in stress partitioning and damage evolution of AlSil2CuMgNi alloy}, series = {Materials Science and Engineering: A-Structural materials: properties, microstructure and processing}, volume = {736}, journal = {Materials Science and Engineering: A-Structural materials: properties, microstructure and processing}, publisher = {Elsevier}, address = {Lausanne}, issn = {0921-5093}, doi = {10.1016/j.msea.2018.08.070}, pages = {453 -- 464}, year = {2018}, abstract = {Load partitioning between phases in a cast AlSi12CuMgNi alloy was investigated by in-situ compression test during neutron diffraction experiments. Computed tomography (CT) was used to determine volume fractions of eutectic Si and intermetallic (IM) phases, and to assess internal damage after ex-situ compression tests. The CT reconstructed volumes showed the interconnectivity of IM phases, which build a 3D network together with eutectic Si. Large stresses were found in IMs, revealing their significant role as a reinforcement for the alloy. An existing micromechanical model based on Maxwell scheme was extended to the present case, assuming the alloy as a three-phase composite (Al matrix, eutectic Si, IM phases). The model agrees well with the experimental data. Moreover, it allows predicting the principal stresses in each phase, while experiments can only determine stress differences between the axial and radial sample directions. Finally, we showed that the addition of alloying elements not only allowed developing a 3D interconnected network, but also improved the strength of the Al matrix, and the ability of the alloy constituents to bear mechanical load.}, language = {en} } @article{SiegSchinkoVogeletal.2019, author = {Sieg, Tobias and Schinko, Thomas and Vogel, Kristin and Mechler, Reinhard and Merz, Bruno and Kreibich, Heidi}, title = {Integrated assessment of short-term direct and indirect economic flood impacts including uncertainty quantification}, series = {PLoS ONE}, volume = {14}, journal = {PLoS ONE}, number = {4}, publisher = {Public Library of Science}, address = {San Francisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0212932}, pages = {21}, year = {2019}, abstract = {Understanding and quantifying total economic impacts of flood events is essential for flood risk management and adaptation planning. Yet, detailed estimations of joint direct and indirect flood-induced economic impacts are rare. In this study an innovative modeling procedure for the joint assessment of short-term direct and indirect economic flood impacts is introduced. The procedure is applied to 19 economic sectors in eight federal states of Germany after the flood events in 2013. The assessment of the direct economic impacts is object-based and considers uncertainties associated with the hazard, the exposed objects and their vulnerability. The direct economic impacts are then coupled to a supply-side Input-Output-Model to estimate the indirect economic impacts. The procedure provides distributions of direct and indirect economic impacts which capture the associated uncertainties. The distributions of the direct economic impacts in the federal states are plausible when compared to reported values. The ratio between indirect and direct economic impacts shows that the sectors Manufacturing, Financial and Insurance activities suffered the most from indirect economic impacts. These ratios also indicate that indirect economic impacts can be almost as high as direct economic impacts. They differ strongly between the economic sectors indicating that the application of a single factor as a proxy for the indirect impacts of all economic sectors is not appropriate.}, language = {en} } @misc{SiegShinkoVogeletal.2019, author = {Sieg, Tobias and Shinko, Thomas and Vogel, Kristin and Mechler, Reinhard and Merz, Bruno and Kreibich, Heidi}, title = {Integrated assessment of short-term direct and indirect economic flood impacts including uncertainty quantification}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {708}, doi = {10.25932/publishup-42911}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-429119}, pages = {21}, year = {2019}, abstract = {Understanding and quantifying total economic impacts of flood events is essential for flood risk management and adaptation planning. Yet, detailed estimations of joint direct and indirect flood-induced economic impacts are rare. In this study an innovative modeling procedure for the joint assessment of short-term direct and indirect economic flood impacts is introduced. The procedure is applied to 19 economic sectors in eight federal states of Germany after the flood events in 2013. The assessment of the direct economic impacts is object-based and considers uncertainties associated with the hazard, the exposed objects and their vulnerability. The direct economic impacts are then coupled to a supply-side Input-Output-Model to estimate the indirect economic impacts. The procedure provides distributions of direct and indirect economic impacts which capture the associated uncertainties. The distributions of the direct economic impacts in the federal states are plausible when compared to reported values. The ratio between indirect and direct economic impacts shows that the sectors Manufacturing, Financial and Insurance activities suffered the most from indirect economic impacts. These ratios also indicate that indirect economic impacts can be almost as high as direct economic impacts. They differ strongly between the economic sectors indicating that the application of a single factor as a proxy for the indirect impacts of all economic sectors is not appropriate.}, language = {en} }