@article{AdemKueteMbavengetal.2018, author = {Adem, Fozia A. and Kuete, Victor and Mbaveng, Armelle T. and Heydenreich, Matthias and Ndakala, Albert and Irungu, Beatrice and Efferth, Thomas and Yenesew, Abiy}, title = {Cytotoxic benzylbenzofuran derivatives from Dorstenia kameruniana}, series = {Fitoterapia}, volume = {128}, journal = {Fitoterapia}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0367-326X}, doi = {10.1016/j.fitote.2018.04.019}, pages = {26 -- 30}, year = {2018}, abstract = {Chromatographic separation of the extract of the roots of Dorstenia kameruniana (family Moraceae) led to the isolation of three new benzylbenzofuran derivatives, 2-(p-hydroxybenzyl)benzofuran-6-ol (1), 2-(p-hydroxybenzyl)-7-methoxybenzofuran-6-ol (2) and 2-(p-hydroxy)-3-(3-methylbut-2-en-1-yl)benzyl)benzofuran-6-ol (3) (named dorsmerunin A, B and C, respectively), along with the known furanocoumarin, bergapten (4). The twigs of Dorstenia kameruniana also produced compounds 1-4 as well as the known chalcone licoagrochalcone A (5). The structures were elucidated by NMR spectroscopy and mass spectrometry. The isolated compounds displayed cytotoxicity against the sensitive CCRF-CEM and multidrug-resistant CEM/ADR5000 leukemia cells, where compounds 4 and 5 had the highest activities (IC50 values of 7.17 mu M and 5.16 mu M, respectively) against CCRF-CEM leukemia cells. Compound 5 also showed cytotoxicity against 7 sensitive or drug-resistant solid tumor cell lines (breast carcinoma, colon carcinoma, glioblastoma), with IC50 below 50 mu M, whilst 4 showed selective activity.}, language = {en} } @article{YaoubaKochGuantaietal.2018, author = {Yaouba, Souaibou and Koch, Andreas and Guantai, Eric M. and Derese, Solomon and Irungu, Beatrice and Heydenreich, Matthias and Yenesew, Abiy}, title = {Alkenyl cyclohexanone derivatives from Lannea rivae and Lannea schweinfurthii}, series = {Phytochemistry letters / Phytochemical Society of Europe}, volume = {23}, journal = {Phytochemistry letters / Phytochemical Society of Europe}, publisher = {Elsevier}, address = {Amsterdam}, issn = {1874-3900}, doi = {10.1016/j.phytol.2017.12.001}, pages = {141 -- 148}, year = {2018}, abstract = {Phytochemical investigation of the CH2Cl2/MeOH (1:1) extract of the roots of Lannea rivae (Chiov) Sacleux (Anacardiaceae) led to the isolation of a new alkenyl cyclohexenone derivative: (4R,6S)-4,6-dihydroxy-6-((Z)-nonadec-14′-en-1-yl)cyclohex-2-en-1-one (1), and a new alkenyl cyclohexanol derivative: (2S*,4R*,5S*)-2,4,5-trihydroxy-2-((Z)-nonadec-14′-en-1-yl)cyclohexanone (2) along with four known compounds, namely epicatechin gallate, taraxerol, taraxerone and β-sitosterol; while the stem bark afforded two known compounds, daucosterol and lupeol. Similar investigation of the roots of Lannea schweinfurthii (Engl.) Engl. led to the isolation of four known compounds: 3-((E)-nonadec-16′-enyl)phenol, 1-((E)-heptadec-14′-enyl)cyclohex-4-ene-1,3-diol, catechin, and 1-((E)-pentadec-12′-enyl)cyclohex-4-ene-1,3-diol. The structures of the isolated compounds were determined by NMR spectroscopy and mass spectrometry. The absolute configuration of compound 1 was established by quantum chemical ECD calculations. In an antibacterial activity assay using the microbroth kinetic method, compound 1 showed moderate activity against Escherichia coli while compound 2 exhibited moderate activity against Staphylococcus aureus. Compound 1 also showed moderate activity against E. coli using the disc diffusion method. The roots extract of L. rivae was notably cytotoxic against both the DU-145 prostate cancer cell line and the Vero mammalian cell line (CC50 = 5.24 and 5.20 μg/mL, respectively). Compound 1 was also strongly cytotoxic against the DU-145 cell line (CC50 = 0.55 μg/mL) but showed no observable cytotoxicity (CC50 > 100 μg/mL) against the Vero cell line. The roots extract of L. rivae and L. schweinfurthii, epicatechin gallate as well as compound 1 exhibited inhibition of carageenan-induced inflammation.}, language = {en} }