@article{ObrehtWoermerBraueretal.2020, author = {Obreht, Igor and W{\"o}rmer, Lars and Brauer, Achim and Wendt, Jenny and Alfken, Susanne and De Vleeschouwer, David and Elvert, Marcus and Hinrichs, Kai-Uwe}, title = {An annually resolved record of Western European vegetation response to Younger Dryas cooling}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {231}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, publisher = {Elsevier}, address = {Amsterdam [u.a.]}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2020.106198}, pages = {15}, year = {2020}, abstract = {The regional patterns and timing of the Younger Dryas cooling in the North Atlantic realm were complex and are mechanistically incompletely understood. To enhance understanding of regional climate patterns, we present molecular biomarker records at subannual to annual resolution by mass spectrometry imaging (MSI) of sediments from the Lake Meerfelder Maar covering the Allerod-Younger Dryas transition. These analyses are supported by conventional extraction-based molecular-isotopic analyses, which both validate the imaging results and constrain the sources of the target compounds. The targeted fatty acid biomarkers serve as a gauge of the response of the local aquatic and terrestrial ecosystem to climate change. Based on the comparison of our data with existing data from Meerfelder Maar, we analyse the short-term environmental evolution in Western Europe during the studied time interval and confirm the previously reported delayed hydrological response to Greenland cooling. However, despite a detected delay of Western European environmental change of similar to 135 years, our biomarker data show statistically significant correlation with deuterium excess in Greenland ice core at - annual resolution during this time-transgressive cooling. This suggests a coherent atmospheric forcing across the North Atlantic realm during this transition. We propose that Western European cooling was postponed due to major reorganization of the westerlies that were intermittently forcing warmer and wetter air masses from lower latitudes to Western Europe and thus resulted in delayed cooling relative to Greenland.}, language = {en} } @article{SchellChudobaLeboucheretal.2020, author = {Schell, Mareike and Chudoba, Chantal and Leboucher, Antoine and Alfine, Eugenia and Flore, Tanina and Ritter, Katrin and Weiper, Katharina and Wernitz, Andreas and Henkel, Janin and Kleinridders, Andr{\´e}}, title = {Interplay of Dietary Fatty Acids and Cholesterol Impacts Brain Mitochondria and Insulin Action}, series = {Nutrients}, volume = {12}, journal = {Nutrients}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {2072-6643}, doi = {10.3390/nu12051518}, pages = {22}, year = {2020}, abstract = {Overconsumption of high-fat and cholesterol-containing diets is detrimental for metabolism and mitochondrial function, causes inflammatory responses and impairs insulin action in peripheral tissues. Dietary fatty acids can enter the brain to mediate the nutritional status, but also to influence neuronal homeostasis. Yet, it is unclear whether cholesterol-containing high-fat diets (HFDs) with different combinations of fatty acids exert metabolic stress and impact mitochondrial function in the brain. To investigate whether cholesterol in combination with different fatty acids impacts neuronal metabolism and mitochondrial function, C57BL/6J mice received different cholesterol-containing diets with either high concentrations of long-chain saturated fatty acids or soybean oil-derived poly-unsaturated fatty acids. In addition, CLU183 neurons were stimulated with combinations of palmitate, linoleic acid and cholesterol to assess their effects on metabolic stress, mitochondrial function and insulin action. The dietary interventions resulted in a molecular signature of metabolic stress in the hypothalamus with decreased expression of occludin and subunits of mitochondrial electron chain complexes, elevated protein carbonylation, as well as c-Jun N-terminal kinase (JNK) activation. Palmitate caused mitochondrial dysfunction, oxidative stress, insulin and insulin-like growth factor-1 (IGF-1) resistance, while cholesterol and linoleic acid did not cause functional alterations. Finally, we defined insulin receptor as a novel negative regulator of metabolically stress-induced JNK activation.}, language = {en} } @misc{SchellChudobaLeboucheretal.2020, author = {Schell, Mareike and Chudoba, Chantal and Leboucher, Antoine and Alfine, Eugenia and Flore, Tanina and Ritter, Katrin and Weiper, Katharina and Wernitz, Andreas and Henkel, Janin and Kleinridders, Andr{\´e}}, title = {Interplay of Dietary Fatty Acids and Cholesterol Impacts Brain Mitochondria and Insulin Action}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {946}, issn = {1866-8372}, doi = {10.25932/publishup-47077}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-470773}, pages = {24}, year = {2020}, abstract = {Overconsumption of high-fat and cholesterol-containing diets is detrimental for metabolism and mitochondrial function, causes inflammatory responses and impairs insulin action in peripheral tissues. Dietary fatty acids can enter the brain to mediate the nutritional status, but also to influence neuronal homeostasis. Yet, it is unclear whether cholesterol-containing high-fat diets (HFDs) with different combinations of fatty acids exert metabolic stress and impact mitochondrial function in the brain. To investigate whether cholesterol in combination with different fatty acids impacts neuronal metabolism and mitochondrial function, C57BL/6J mice received different cholesterol-containing diets with either high concentrations of long-chain saturated fatty acids or soybean oil-derived poly-unsaturated fatty acids. In addition, CLU183 neurons were stimulated with combinations of palmitate, linoleic acid and cholesterol to assess their effects on metabolic stress, mitochondrial function and insulin action. The dietary interventions resulted in a molecular signature of metabolic stress in the hypothalamus with decreased expression of occludin and subunits of mitochondrial electron chain complexes, elevated protein carbonylation, as well as c-Jun N-terminal kinase (JNK) activation. Palmitate caused mitochondrial dysfunction, oxidative stress, insulin and insulin-like growth factor-1 (IGF-1) resistance, while cholesterol and linoleic acid did not cause functional alterations. Finally, we defined insulin receptor as a novel negative regulator of metabolically stress-induced JNK activation.}, language = {en} } @article{SchaelickeHeimMartinCreuzburgetal.2020, author = {Sch{\"a}licke, Svenja and Heim, Silvia and Martin-Creuzburg, Dominik and Wacker, Alexander}, title = {Inter- and intraspecific differences in rotifer fatty acid composition during acclimation to low-quality food}, series = {Philosophical transactions of the Royal Society of London : B, Biological sciences}, volume = {375}, journal = {Philosophical transactions of the Royal Society of London : B, Biological sciences}, number = {1804}, publisher = {Royal Society}, address = {London}, issn = {0962-8436}, doi = {10.1098/rstb.2019.0644}, pages = {8}, year = {2020}, abstract = {Biochemical food quality constraints affect the performance of consumers and mediate trait variation among and within consumer species. To assess inter- and intraspecific differences in fatty acid retention and conversion in freshwater rotifers, we provided four strains of two closely related rotifer species,Brachionus calyciflorussensustricto andBrachionus fernandoi, with food algae differing in their fatty acid composition. The rotifers grazed for 5 days on eitherNannochloropsis limneticaorMonoraphidium minutum, two food algae with distinct polyunsaturated fatty acid (PUFA) profiles, before the diets were switched to PUFA-freeSynechococcus elongatus, which was provided for three more days. We found between- and within-species differences in rotifer fatty acid compositions on the respective food sources and, in particular, highly specific acclimation reactions to the PUFA-free diet. The different reactions indicate inter- but also intraspecific differences in physiological traits, such as PUFA retention, allocation and bioconversion capacities, within the genusBrachionusthat are most likely accompanied by differences in their nutritional demands. Our data suggest that biochemical food quality constraints act differently on traits of closely related species and of strains of a particular species and thus might be involved in shaping ecological interactions and evolutionary processes. This article is part of the theme issue 'The next horizons for lipids as 'trophic biomarkers': evidence and significance of consumer modification of dietary fatty acids'.}, language = {en} }