@article{HauffeRathAgyapongetal.2022, author = {Hauffe, Robert and Rath, Michaela and Agyapong, Wilson and Jonas, Wenke and Vogel, Heike and Schulz, Tim Julius and Schwarz, Maria and Kipp, Anna Patricia and Bl{\"u}her, Matthias and Kleinridders, Andr{\´e}}, title = {Obesity Hinders the Protective Effect of Selenite Supplementation on Insulin Signaling}, series = {Antioxidants}, volume = {11}, journal = {Antioxidants}, edition = {5}, publisher = {MDPI}, address = {Basel, Schweiz}, issn = {2076-3921}, doi = {10.3390/antiox11050862}, pages = {1 -- 16}, year = {2022}, abstract = {The intake of high-fat diets (HFDs) containing large amounts of saturated long-chain fatty acids leads to obesity, oxidative stress, inflammation, and insulin resistance. The trace element selenium, as a crucial part of antioxidative selenoproteins, can protect against the development of diet-induced insulin resistance in white adipose tissue (WAT) by increasing glutathione peroxidase 3 (GPx3) and insulin receptor (IR) expression. Whether selenite (Se) can attenuate insulin resistance in established lipotoxic and obese conditions is unclear. We confirm that GPX3 mRNA expression in adipose tissue correlates with BMI in humans. Cultivating 3T3-L1 pre-adipocytes in palmitate-containing medium followed by Se treatment attenuates insulin resistance with enhanced GPx3 and IR expression and adipocyte differentiation. However, feeding obese mice a selenium-enriched high-fat diet (SRHFD) only resulted in a modest increase in overall selenoprotein gene expression in WAT in mice with unaltered body weight development, glucose tolerance, and insulin resistance. While Se supplementation improved adipocyte morphology, it did not alter WAT insulin sensitivity. However, mice fed a SRHFD exhibited increased insulin content in the pancreas. Overall, while selenite protects against palmitate-induced insulin resistance in vitro, obesity impedes the effect of selenite on insulin action and adipose tissue metabolism in vivo.}, language = {en} } @misc{HauffeRathAgyapongetal.2022, author = {Hauffe, Robert and Rath, Michaela and Agyapong, Wilson and Jonas, Wenke and Vogel, Heike and Schulz, Tim Julius and Schwarz, Maria and Kipp, Anna Patricia and Bl{\"u}her, Matthias and Kleinridders, Andr{\´e}}, title = {Obesity Hinders the Protective Effect of Selenite Supplementation on Insulin Signaling}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-56170}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-561709}, pages = {1 -- 16}, year = {2022}, abstract = {The intake of high-fat diets (HFDs) containing large amounts of saturated long-chain fatty acids leads to obesity, oxidative stress, inflammation, and insulin resistance. The trace element selenium, as a crucial part of antioxidative selenoproteins, can protect against the development of diet-induced insulin resistance in white adipose tissue (WAT) by increasing glutathione peroxidase 3 (GPx3) and insulin receptor (IR) expression. Whether selenite (Se) can attenuate insulin resistance in established lipotoxic and obese conditions is unclear. We confirm that GPX3 mRNA expression in adipose tissue correlates with BMI in humans. Cultivating 3T3-L1 pre-adipocytes in palmitate-containing medium followed by Se treatment attenuates insulin resistance with enhanced GPx3 and IR expression and adipocyte differentiation. However, feeding obese mice a selenium-enriched high-fat diet (SRHFD) only resulted in a modest increase in overall selenoprotein gene expression in WAT in mice with unaltered body weight development, glucose tolerance, and insulin resistance. While Se supplementation improved adipocyte morphology, it did not alter WAT insulin sensitivity. However, mice fed a SRHFD exhibited increased insulin content in the pancreas. Overall, while selenite protects against palmitate-induced insulin resistance in vitro, obesity impedes the effect of selenite on insulin action and adipose tissue metabolism in vivo.}, language = {en} } @misc{HauffeRathSchelletal.2022, author = {Hauffe, Robert and Rath, Michaela and Schell, Mareike and Ritter, Katrin and Kappert, Kai and Deubel, Stefanie and Ott, Christiane and J{\"a}hnert, Markus and Jonas, Wenke and Sch{\"u}rmann, Annette and Kleinridders, Andr{\´e}}, title = {HSP60 reduction protects against diet-induced obesity by modulating energy metabolism in adipose tissue}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, publisher = {Universit{\"a}tsverlag Potsdam}, address = {Potsdam}, issn = {1866-8372}, doi = {10.25932/publishup-54800}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-548002}, pages = {1 -- 14}, year = {2022}, abstract = {Objective Insulin regulates mitochondrial function, thereby propagating an efficient metabolism. Conversely, diabetes and insulin resistance are linked to mitochondrial dysfunction with a decreased expression of the mitochondrial chaperone HSP60. The aim of this investigation was to determine the effect of a reduced HSP60 expression on the development of obesity and insulin resistance. Methods Control and heterozygous whole-body HSP60 knockout (Hsp60+/-) mice were fed a high-fat diet (HFD, 60\% calories from fat) for 16 weeks and subjected to extensive metabolic phenotyping. To understand the effect of HSP60 on white adipose tissue, microarray analysis of gonadal WAT was performed, ex vivo experiments were performed, and a lentiviral knockdown of HSP60 in 3T3-L1 cells was conducted to gain detailed insights into the effect of reduced HSP60 levels on adipocyte homeostasis. Results Male Hsp60+/- mice exhibited lower body weight with lower fat mass. These mice exhibited improved insulin sensitivity compared to control, as assessed by Matsuda Index and HOMA-IR. Accordingly, insulin levels were significantly reduced in Hsp60+/- mice in a glucose tolerance test. However, Hsp60+/- mice exhibited an altered adipose tissue metabolism with elevated insulin-independent glucose uptake, adipocyte hyperplasia in the presence of mitochondrial dysfunction, altered autophagy, and local insulin resistance. Conclusions We discovered that the reduction of HSP60 in mice predominantly affects adipose tissue homeostasis, leading to beneficial alterations in body weight, body composition, and adipocyte morphology, albeit exhibiting local insulin resistance.}, language = {en} } @article{HauffeRathSchelletal.2021, author = {Hauffe, Robert and Rath, Michaela and Schell, Mareike and Ritter, Katrin and Kappert, Kai and Deubel, Stefanie and Ott, Christiane and J{\"a}hnert, Markus and Jonas, Wenke and Sch{\"u}rmann, Annette and Kleinridders, Andr{\´e}}, title = {HSP60 reduction protects against diet-induced obesity by modulating energy metabolism in adipose tissue}, series = {Molecular Metabolism}, volume = {53}, journal = {Molecular Metabolism}, publisher = {Elsevier}, address = {Amsterdam, Niederlande}, issn = {2212-8778}, doi = {10.1016/j.molmet.2021.101276}, pages = {1 -- 14}, year = {2021}, abstract = {Objective Insulin regulates mitochondrial function, thereby propagating an efficient metabolism. Conversely, diabetes and insulin resistance are linked to mitochondrial dysfunction with a decreased expression of the mitochondrial chaperone HSP60. The aim of this investigation was to determine the effect of a reduced HSP60 expression on the development of obesity and insulin resistance. Methods Control and heterozygous whole-body HSP60 knockout (Hsp60+/-) mice were fed a high-fat diet (HFD, 60\% calories from fat) for 16 weeks and subjected to extensive metabolic phenotyping. To understand the effect of HSP60 on white adipose tissue, microarray analysis of gonadal WAT was performed, ex vivo experiments were performed, and a lentiviral knockdown of HSP60 in 3T3-L1 cells was conducted to gain detailed insights into the effect of reduced HSP60 levels on adipocyte homeostasis. Results Male Hsp60+/- mice exhibited lower body weight with lower fat mass. These mice exhibited improved insulin sensitivity compared to control, as assessed by Matsuda Index and HOMA-IR. Accordingly, insulin levels were significantly reduced in Hsp60+/- mice in a glucose tolerance test. However, Hsp60+/- mice exhibited an altered adipose tissue metabolism with elevated insulin-independent glucose uptake, adipocyte hyperplasia in the presence of mitochondrial dysfunction, altered autophagy, and local insulin resistance. Conclusions We discovered that the reduction of HSP60 in mice predominantly affects adipose tissue homeostasis, leading to beneficial alterations in body weight, body composition, and adipocyte morphology, albeit exhibiting local insulin resistance.}, language = {en} } @misc{WardelmannRathCastroetal.2021, author = {Wardelmann, Kristina and Rath, Michaela and Castro, Jos{\´e} Pedro and Bl{\"u}mel, Sabine and Schell, Mareike and Hauffe, Robert and Schumacher, Fabian and Flore, Tanina and Ritter, Katrin and Wernitz, Andreas and Hosoi, Toru and Ozawa, Koichiro and Kleuser, Burkhard and Weiß, J{\"u}rgen and Sch{\"u}rmann, Annette and Kleinridders, Andr{\´e}}, title = {Central acting Hsp10 regulates mitochondrial function, fatty acid metabolism and insulin sensitivity in the hypothalamus}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {5}, issn = {1866-8372}, doi = {10.25932/publishup-52298}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-522985}, pages = {24}, year = {2021}, abstract = {Mitochondria are critical for hypothalamic function and regulators of metabolism. Hypothalamic mitochondrial dysfunction with decreased mitochondrial chaperone expression is present in type 2 diabetes (T2D). Recently, we demonstrated that a dysregulated mitochondrial stress response (MSR) with reduced chaperone expression in the hypothalamus is an early event in obesity development due to insufficient insulin signaling. Although insulin activates this response and improves metabolism, the metabolic impact of one of its members, the mitochondrial chaperone heat shock protein 10 (Hsp10), is unknown. Thus, we hypothesized that a reduction of Hsp10 in hypothalamic neurons will impair mitochondrial function and impact brain insulin action. Therefore, we investigated the role of chaperone Hsp10 by introducing a lentiviral-mediated Hsp10 knockdown (KD) in the hypothalamic cell line CLU-183 and in the arcuate nucleus (ARC) of C57BL/6N male mice. We analyzed mitochondrial function and insulin signaling utilizing qPCR, Western blot, XF96 Analyzer, immunohistochemistry, and microscopy techniques. We show that Hsp10 expression is reduced in T2D mice brains and regulated by leptin in vitro. Hsp10 KD in hypothalamic cells induced mitochondrial dysfunction with altered fatty acid metabolism and increased mitochondria-specific oxidative stress resulting in neuronal insulin resistance. Consequently, the reduction of Hsp10 in the ARC of C57BL/6N mice caused hypothalamic insulin resistance with acute liver insulin resistance.}, language = {en} } @article{WardelmannRathCastroetal.2021, author = {Wardelmann, Kristina and Rath, Michaela and Castro, Jos{\´e} Pedro and Bl{\"u}mel, Sabine and Schell, Mareike and Hauffe, Robert and Schumacher, Fabian and Flore, Tanina and Ritter, Katrin and Wernitz, Andreas and Hosoi, Toru and Ozawa, Koichiro and Kleuser, Burkhard and Weiß, J{\"u}rgen and Sch{\"u}rmann, Annette and Kleinridders, Andr{\´e}}, title = {Central acting Hsp10 regulates mitochondrial function, fatty acid metabolism and insulin sensitivity in the hypothalamus}, series = {Antioxidants}, volume = {10}, journal = {Antioxidants}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {2076-3921}, doi = {10.3390/antiox10050711}, pages = {22}, year = {2021}, abstract = {Mitochondria are critical for hypothalamic function and regulators of metabolism. Hypothalamic mitochondrial dysfunction with decreased mitochondrial chaperone expression is present in type 2 diabetes (T2D). Recently, we demonstrated that a dysregulated mitochondrial stress response (MSR) with reduced chaperone expression in the hypothalamus is an early event in obesity development due to insufficient insulin signaling. Although insulin activates this response and improves metabolism, the metabolic impact of one of its members, the mitochondrial chaperone heat shock protein 10 (Hsp10), is unknown. Thus, we hypothesized that a reduction of Hsp10 in hypothalamic neurons will impair mitochondrial function and impact brain insulin action. Therefore, we investigated the role of chaperone Hsp10 by introducing a lentiviral-mediated Hsp10 knockdown (KD) in the hypothalamic cell line CLU-183 and in the arcuate nucleus (ARC) of C57BL/6N male mice. We analyzed mitochondrial function and insulin signaling utilizing qPCR, Western blot, XF96 Analyzer, immunohistochemistry, and microscopy techniques. We show that Hsp10 expression is reduced in T2D mice brains and regulated by leptin in vitro. Hsp10 KD in hypothalamic cells induced mitochondrial dysfunction with altered fatty acid metabolism and increased mitochondria-specific oxidative stress resulting in neuronal insulin resistance. Consequently, the reduction of Hsp10 in the ARC of C57BL/6N mice caused hypothalamic insulin resistance with acute liver insulin resistance.}, language = {en} }