@misc{HanackSchloerHolzloehneretal.2016, author = {Hanack, Katja and Schloer, Anja and Holzloehner, Pamela and Listek, Martin and Bauer, Cindy and Butze, Monique and Micheel, Burkhard and Hentschel, Christian and Sowa, Mandy and Roggenbuck, Dirk and Schierack, Peter and Fuener, Jonas and Schliebs, Erik and Goihl, Alexander and Reinhold, Dirk}, title = {Camelid nanobodies specific to human pancreatic glycoprotein 2}, series = {The journal of immunology}, volume = {196}, journal = {The journal of immunology}, publisher = {American Assoc. of Immunologists}, address = {Bethesda}, issn = {0022-1767}, pages = {313 -- 328}, year = {2016}, abstract = {Pancreatic secretory zymogen-granule membrane glycoprotein 2 (GP2) has been identified to be a major autoantigenic target in Crohn's disease patients. It was discussed recently that a long and a short isoform of GP2 exists whereas the short isoform is often detected by GP2-specific autoantibodies. In the outcome of inflammatory bowel diseases, these GP2-specific autoantibodies are discussed as new serological markers for diagnosis and therapeutic monitoring. To investigate this further, camelid nanobodies were generated by phage display and selected against the short isoform of GP2 in order to isolate specific tools for the discrimination of both isoforms. Nanobodies are single domain antibodies derived from camelid heavy chain only antibodies and characterized by a high stability and solubility. The selected candidates were expressed, purified and validated regarding their binding properties in different enzyme-linked immunosorbent assays formats, immunofluorescence, immunohistochemistry and surface plasmon resonance spectroscopy. Four different nanobodies could be selected whereof three recognize the short isoform of GP2 very specifically and one nanobody showed a high binding capacity for both isoforms. The KD values measured for all nanobodies were between 1.3 nM and 2.3 pM indicating highly specific binders suitable for the application as diagnostic tool in inflammatory bowel disease.}, language = {en} } @misc{LowHentschelStoberetal.2017, author = {Low, Thomas and Hentschel, Christian and Stober, Sebastian and Sack, Harald and N{\"u}rnberger, Andreas}, title = {Exploring large movie collections}, series = {Lecture notes in computer science}, volume = {10133}, journal = {Lecture notes in computer science}, editor = {Amsaleg, Laurent and Guðmundsson, Gylfi Þ{\´o}r and Gurrin, Cathal and J{\´o}nsson, Bj{\"o}rn Þ{\´o}r and Satoh, Shin'ichi}, publisher = {Springer}, address = {Cham}, isbn = {978-3-319-51814-5}, issn = {0302-9743}, doi = {10.1007/978-3-319-51814-5_17}, pages = {198 -- 208}, year = {2017}, abstract = {We compare Visual Berrypicking, an interactive approach allowing users to explore large and highly faceted information spaces using similarity-based two-dimensional maps, with traditional browsing techniques. For large datasets, current projection methods used to generate maplike overviews suffer from increased computational costs and a loss of accuracy resulting in inconsistent visualizations. We propose to interactively align inexpensive small maps, showing local neighborhoods only, which ideally creates the impression of panning a large map. For evaluation, we designed a web-based prototype for movie exploration and compared it to the web interface of The Movie Database (TMDb) in an online user study. Results suggest that users are able to effectively explore large movie collections by hopping from one neighborhood to the next. Additionally, due to the projection of movie similarities, interesting links between movies can be found more easily, and thus, compared to browsing serendipitous discoveries are more likely.}, language = {en} }