@phdthesis{Ion2018, author = {Ion, Alexandra}, title = {Metamaterial devices}, doi = {10.25932/publishup-42986}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-429861}, school = {Universit{\"a}t Potsdam}, pages = {x, 173}, year = {2018}, abstract = {Digital fabrication machines such as 3D printers excel at producing arbitrary shapes, such as for decorative objects. In recent years, researchers started to engineer not only the outer shape of objects, but also their internal microstructure. Such objects, typically based on 3D cell grids, are known as metamaterials. Metamaterials have been used to create materials that, e.g., change their volume, or have variable compliance. While metamaterials were initially understood as materials, we propose to think of them as devices. We argue that thinking of metamaterials as devices enables us to create internal structures that offer functionalities to implement an input-process-output model without electronics, but purely within the material's internal structure. In this thesis, we investigate three aspects of such metamaterial devices that implement parts of the input-process-output model: (1) materials that process analog inputs by implementing mechanisms based on their microstructure, (2) that process digital signals by embedding mechanical computation into the object's microstructure, and (3) interactive metamaterial objects that output to the user by changing their outside to interact with their environment. The input to our metamaterial devices is provided directly by the users interacting with the device by means of physically pushing the metamaterial, e.g., turning a handle, pushing a button, etc. The design of such intricate microstructures, which enable the functionality of metamaterial devices, is not obvious. The complexity of the design arises from the fact that not only a suitable cell geometry is necessary, but that additionally cells need to play together in a well-defined way. To support users in creating such microstructures, we research and implement interactive design tools. These tools allow experts to freely edit their materials, while supporting novice users by auto-generating cells assemblies from high-level input. Our tools implement easy-to-use interactions like brushing, interactively simulate the cell structures' deformation directly in the editor, and export the geometry as a 3D-printable file. Our goal is to foster more research and innovation on metamaterial devices by allowing the broader public to contribute.}, language = {en} } @phdthesis{Kovacs2022, author = {Kov{\´a}cs, R{\´o}bert}, title = {Human-scale personal fabrication}, doi = {10.25932/publishup-55539}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-555398}, school = {Universit{\"a}t Potsdam}, pages = {139}, year = {2022}, abstract = {The availability of commercial 3D printers and matching 3D design software has allowed a wide range of users to create physical prototypes - as long as these objects are not larger than hand size. However, when attempting to create larger, "human-scale" objects, such as furniture, not only are these machines too small, but also the commonly used 3D design software is not equipped to design with forces in mind — since forces increase disproportionately with scale. In this thesis, we present a series of end-to-end fabrication software systems that support users in creating human-scale objects. They achieve this by providing three main functions that regular "small-scale" 3D printing software does not offer: (1) subdivision of the object into small printable components combined with ready-made objects, (2) editing based on predefined elements sturdy enough for larger scale, i.e., trusses, and (3) functionality for analyzing, detecting, and fixing structural weaknesses. The presented software systems also assist the fabrication process based on either 3D printing or steel welding technology. The presented systems focus on three levels of engineering challenges: (1) fabricating static load-bearing objects, (2) creating mechanisms that involve motion, such as kinematic installations, and finally (3) designing mechanisms with dynamic repetitive movement where power and energy play an important role. We demonstrate and verify the versatility of our systems by building and testing human-scale prototypes, ranging from furniture pieces, pavilions, to animatronic installations and playground equipment. We have also shared our system with schools, fablabs, and fabrication enthusiasts, who have successfully created human-scale objects that can withstand with human-scale forces.}, language = {en} }