@unpublished{EcksteinDengelJanic2008, author = {Eckstein, Lars and Dengel-Janic, Ellen}, title = {Bridehood revisited}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-85555}, pages = {19}, year = {2008}, language = {en} } @unpublished{KleinZitt2008, author = {Klein, Markus and Zitt, Pierre-Andr{\´e}}, title = {Resonances for a diffusion with small noise}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-49448}, year = {2008}, abstract = {We study resonances for the generator of a diffusion with small noise in R(d) : L = -∈∆ + ∇F * ∇, when the potential F grows slowly at infinity (typically as a square root of the norm). The case when F grows fast is well known, and under suitable conditions one can show that there exists a family of exponentially small eigenvalues, related to the wells of F. We show that, for an F with a slow growth, the spectrum is R+, but we can find a family of resonances whose real parts behave as the eigenvalues of the "quick growth" case, and whose imaginary parts are small.}, language = {en} } @unpublished{Laeuter2008, author = {L{\"a}uter, Henning}, title = {Empirical Minimax Linear Estimates}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-49483}, year = {2008}, abstract = {We give the explicit solution for the minimax linear estimate. For scale dependent models an empirical minimax linear estimates is de¯ned and we prove that these estimates are Stein's estimates.}, language = {en} } @unpublished{Murr2008, author = {Murr, R{\"u}diger}, title = {Dualit{\"a}tsformeln f{\"u}r Brownsche Bewegung und f{\"u}r eine Irrfahrt mit Anwendung am Konvergenzergebnis von Donsker}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-49476}, year = {2008}, abstract = {Aus dem Inhalt: 0.1 Danksagung 0.2 Einleitung 1 Allgemeines und Grundlagen 1.1 Die Brownsche Bewegung 2 Die Dualit{\"a}tsformel des Wienermaßes 2.1 Wienermaß erf{\"u}llt Dualit{\"a}tsformel 2.2 Dualit{\"a}tsformel charakterisiert Wienermaß 3 Die diskrete Dualit{\"a}tsformel der Irrfahrt 3.1 Verallgemeinerte symmetrische Irrfahrt erf{\"u}llt diskrete Dualit{\"a}tsformel 3.2 Diskrete Dualit{\"a}tsformel charakterisiert verallgemeinerte symmetrische Irrfahrt 4 Donskers Theorem und die Dualit{\"a}tsformeln 4.1 Straffheit der renormierten stetigen Irrfahrt 4.2 Konvergenz der Irrfahrt 5 Anhang}, language = {de} } @unpublished{PraLouisMinelli2008, author = {Pra, Paolo Dai and Louis, Pierre-Yves and Minelli, Ida G.}, title = {Complete monotone coupling for Markov processes}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-18286}, year = {2008}, abstract = {We formalize and analyze the notions of monotonicity and complete monotonicity for Markov Chains in continuous-time, taking values in a finite partially ordered set. Similarly to what happens in discrete-time, the two notions are not equivalent. However, we show that there are partially ordered sets for which monotonicity and complete monotonicity coincide in continuoustime but not in discrete-time.}, language = {de} } @unpublished{Rafler2008, author = {Rafler, Mathias}, title = {Martin-Dynkin Boundaries of the Bose Gas}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-51667}, year = {2008}, abstract = {The Ginibre gas is a Poisson point process defined on a space of loops related to the Feynman-Kac representation of the ideal Bose gas. Here we study thermodynamic limits of different ensembles via Martin-Dynkin boundary technique and show, in which way infinitely long loops occur. This effect is the so-called Bose-Einstein condensation.}, language = {en} } @unpublished{Zehmisch2008, author = {Zehmisch, Ren{\´e}}, title = {{\"U}ber Waldidentit{\"a}ten der Brownschen Bewegung}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-49469}, year = {2008}, abstract = {Aus dem Inhalt: 1 Abraham Wald (1902-1950) 2 Einf{\"u}hrung der Grundbegriffe. Einige technische bekannte Ergebnisse 2.1 Martingal und Doob-Ungleichung 2.2 Brownsche Bewegung und spezielle Martingale 2.3 Gleichgradige Integrierbarkeit von Prozessen 2.4 Gestopptes Martingal 2.5 Optionaler Stoppsatz von Doob 2.6 Lokales Martingal 2.7 Quadratische Variation 2.8 Die Dichte der ersten einseitigen {\"U}berschreitungszeit der Brown- schen Bewegung 2.9 Waldidentit{\"a}ten f{\"u}r die {\"U}berschreitungszeiten der Brownschen Bewegung 3 Erste Waldidentit{\"a}t 3.1 Burkholder, Gundy und Davis Ungleichungen der gestoppten Brown- schen Bewegung 3.2 Erste Waldidentit{\"a}t f{\"u}r die Brownsche Bewegung 3.3 Verfeinerungen der ersten Waldidentit{\"a}t 3.4 St{\"a}rkere Verfeinerung der ersten Waldidentit{\"a}t f{\"u}r die Brown- schen Bewegung 3.5 Verfeinerung der ersten Waldidentit{\"a}t f{\"u}r spezielle Stoppzeiten der Brownschen Bewegung 3.6 Beispiele f{\"u}r lokale Martingale f{\"u}r die Verfeinerung der ersten Waldidentit{\"a}t 3.7 {\"U}berschreitungszeiten der Brownschen Bewegung f{\"u}r nichtlineare Schranken 4 Zweite Waldidentit{\"a}t 4.1 Zweite Waldidentit{\"a}t f{\"u}r die Brownsche Bewegung 4.2 Anwendungen der ersten und zweitenWaldidentit{\"a}t f{\"u}r die Brown- schen Bewegung 5 Dritte Waldidentit{\"a}t 5.1 Dritte Waldidentit{\"a}t f{\"u}r die Brownsche Bewegung 5.2 Verfeinerung der dritten Waldidentit{\"a}t 5.3 Eine wichtige Voraussetzung f{\"u}r die Verfeinerung der drittenWal- didentit{\"a}t 5.4 Verfeinerung der dritten Waldidentit{\"a}t f{\"u}r spezielle Stoppzeiten der Brownschen Bewegung 6 Waldidentit{\"a}ten im Mehrdimensionalen 6.1 Erste Waldidentit{\"a}t im Mehrdimensionalen 6.2 Zweite Waldidentit{\"a}t im Mehrdimensionalen 6.3 Dritte Waldidentit{\"a}t im Mehrdimensionalen 7 Appendix}, language = {de} }