@article{CalitriSommervanderMeijetal.2020, author = {Calitri, Francesca and Sommer, Michael and van der Meij, Marijn W. and Egli, Markus}, title = {Soil erosion along a transect in a forested catchment: recent or ancient processes?}, series = {Catena : an interdisciplinary journal of soil science, hydrology, geomorphology focusing on geoecology and landscape evolution}, volume = {194}, journal = {Catena : an interdisciplinary journal of soil science, hydrology, geomorphology focusing on geoecology and landscape evolution}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0341-8162}, doi = {10.1016/j.catena.2020.104683}, pages = {11}, year = {2020}, abstract = {Forested areas are assumed not to be influenced by erosion processes. However, forest soils of Northern Germany in a hummocky ground moraine landscape can sometimes exhibit a very shallow thickness on crest positions and buried soils on slope positions. The question consequently is: Are these on-going or ancient erosional and depositional processes? Plutonium isotopes act as soil erosion/deposition tracers for recent (last few decades) processes. Here, we quantified the 239+240PU inventories in a small, forested catchment (ancient forest "Melzower Forst", deciduous trees), which is characterised by a hummocky terrain including a kettle hole. Soil development depths (depth to C horizon) and 239+240PU inventories along a catena of sixteen different profiles were determined and correlated to relief parameters. Moreover, we compared different modelling approaches to derive erosion rates from Pu data.
We find a strong relationship between soil development depths, distance-to-sink and topography along the catena. Fully developed Retisols (thicknesses > 1 m) in the colluvium overlay old land surfaces as documented by fossil Ah horizons. However, we found no relationship of Pu-based erosion rates to any relief parameter. Instead, 239+240PU inventories showed a very high local, spatial variability (36-70 Bq m(-2)). Low annual rainfall, spatially distributed interception and stem flow might explain the high variability of the 239+240PU inventories, giving rise to a patchy input pattern. Different models resulted in quite similar erosion and deposition rates (max: -5 t ha(-1) yr(-1) to +7.3 t ha(-1) yr(-1)). Although some rates are rather high, the magnitude of soil erosion and deposition - in terms of soil thickness change - is negligible during the last 55 years. The partially high values are an effect of the patchy Pu deposition on the forest floor. This forest has been protected for at least 240 years. Therefore rather natural events and anthropogenic activities during medieval times or even earlier must have caused the observed soil pattern, which documents strong erosion and deposition processes.}, language = {en} } @misc{vanderKroefKoszinskiGrinatetal.2020, author = {van der Kroef, Ilona and Koszinski, Sylvia and Grinat, Michael and van der Meij, Marijn W. and Hierold, Wilfried and S{\"u}dekum, Wolfgang and Sommer, Michael}, title = {Digital mapping of buried soil horizons using 2D and pseudo-3D geoelectrical measurements in a ground moraine landscape}, series = {European journal of soil science : EJSS}, volume = {71}, journal = {European journal of soil science : EJSS}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {1351-0754}, pages = {10 -- 26}, year = {2020}, abstract = {The identification of buried soil horizons in agricultural landscapes helps to quantify sediment budgets and erosion-related carbon dynamics. High-resolution mapping of buried horizons using conventional soil surveys is destructive and time consuming. Geoelectrical sensors can offer a fast and non-destructive alternative for determining horizon positions and properties. In this paper, we compare the suitability of several geoelectrical methods for measuring the depth to buried horizons (Apb, Ahb and Hab) in the hummocky ground moraine landscape of northeastern Germany. Soil profile descriptions were developed for 269 locations within a 6-ha experimental field "CarboZALF-D". A stepwise linear discriminant analysis (LDA) estimated the lateral position of the buried horizons using electromagnetic induction data and terrain attributes. To predict the depth of a buried horizon, multiple linear regression (MLR) was used for both a 120-m transect and a 0.2-ha pseudo-three-dimensional (3D) area. At these scales, apparent electrical conductivity (ECa), electrical resistivity (ER) and terrain attributes were used as independent variables. The LDA accurately predicted Apb- and Ahb-horizons (a correct classification of 93\%). The LDA of the Hab-horizon had a misclassification of 24\%, which was probably related to the smaller test set and the higher depth of this horizon. The MLR predicted the depth of the Apb-, Ahb- and Hab-horizons with relative root mean square errors (RMSEs) of 7, 3 and 13\%, respectively, in the pseudo-3D area. MLR had a lower accuracy for the 2D transect compared to the pseudo-3D area. Overall, the use of LDA and MLR has been an efficient methodological approach for predicting buried horizon positions. Highlights The suitability of geoelectrical measurements for digital modelling of diagnostic buried soil horizons was determined. LDA and MLR were used to detect multiple horizons with geoelectrical devices and terrain attributes. Geoelectrical variables were significant predictors of the position of the target soil horizons. The use of these tested digital technologies gives an opportunity to develop high-resolution soil mapping procedures.}, language = {en} } @article{vanderMeijReimannVornehmetal.2019, author = {van der Meij, Marijn W. and Reimann, Tony and Vornehm, V. K. and Temme, Arnaud J. A. M. and Wallinga, Jakob and van Beek, Roy and Sommer, Michael}, title = {Reconstructing rates and patterns of colluvial soil redistribution in agrarian (hummocky) landscapes}, series = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, volume = {44}, journal = {Earth surface processes and landforms : the journal of the British Geomorphological Research Group}, number = {12}, publisher = {Wiley}, address = {Hoboken}, issn = {0197-9337}, doi = {10.1002/esp.4671}, pages = {2408 -- 2422}, year = {2019}, abstract = {Humans have triggered or accelerated erosion processes since prehistoric times through agricultural practices. Optically stimulated luminescence (OSL) is widely used to quantify phases and rates of the corresponding landscape change, by measuring the last moment of daylight exposure of sediments. However, natural and anthropogenic mixing processes, such as bioturbation and tillage, complicate the use of OSL as grains of different depositional ages become mixed, and grains become exposed to light even long after the depositional event of interest. Instead, OSL determines the stabilization age, indicating when sediments were buried below the active mixing zone. These stabilization ages can cause systematic underestimation when calculating deposition rates. Our focus is on colluvial deposition in a kettle hole in the Uckermark region, northeastern Germany. We took 32 samples from five locations in the colluvium filling the kettle hole to study both spatial and temporal patterns in colluviation. We combined OSL dating with advanced age modelling to determine the stabilization age of colluvial sediments. These ages were combined with an archaeological reconstruction of historical ploughing depths to derive the levels of the soil surface at the moment of stabilization; the deposition depths, which were then used to calculate unbiased deposition rates. We identified two phases of colluvial deposition. The oldest deposits (similar to 5 ka) were located at the fringe of the kettle hole and accumulated relatively slowly, whereas the youngest deposits (<0.3 ka) rapidly filled the central kettle hole with rates of two orders of magnitude higher. We suggest that the latter phase is related to artificial drainage, facilitating accessibility in the central depression for agricultural practices. Our results show the need for numerical dating techniques that take archaeological and soil-geomorphological information into account to identify spatiotemporal patterns of landscape change, and to correctly interpret landscape dynamics in anthropogenically influenced hilly landscapes. (c) 2019 The Authors. Earth Surface Processes and Landforms Published by John Wiley \& Sons Ltd.}, language = {en} } @article{vanderMeijTemmeLinetal.2018, author = {van der Meij, Marijn W. and Temme, Arnaud J. A. M. and Lin, H. S. and Gerke, Horst H. and Sommer, Michael}, title = {On the role of hydrologic processes in soil and landscape evolution modeling}, series = {Earth science reviews : the international geological journal bridging the gap between research articles and textbooks}, volume = {185}, journal = {Earth science reviews : the international geological journal bridging the gap between research articles and textbooks}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0012-8252}, doi = {10.1016/j.earscirev.2018.09.001}, pages = {1088 -- 1106}, year = {2018}, abstract = {The ability of water to transport and transform soil materials is one of the main drivers of soil and landscape development. In turn, soil and landscape properties determine how water is distributed in soil landscapes. Understanding the complex dynamics of this co-evolution of soils, landscapes and the hydrological system is fundamental in adapting land management to changes in climate. Soil-Landscape Evolution Models (SLEMs) are used to simulate the development and evolution of soils and landscapes. However, many hydrologic processes, such as preferential flow and subsurface lateral flow, are currently absent in these models. This limits the applicability of SLEMs to improve our understanding of feedbacks in the hydro-pedo-geomorphological system. Implementation of these hydrologic processes in SLEMs faces several complications related to calculation demands, limited methods for linking pedogenic and hydrologic processes, and limited data on quantification of changes in the hydrological system over time. In this contribution, we first briefly review processes and feedbacks in soil-landscape-hydrological systems. Next, we elaborate on the development required to include these processes in SLEMs. We discuss the state-of-the-art knowledge, identify complications, give partial solutions and suggest important future development. The main requirements for incorporating hydrologic processes in SLEMs are: (1) designing a model framework that can deal with varying timescales for different sets of processes, (2) developing and implementing methods for simulating pedogenesis as a function of water flow, (3) improving and implementing knowledge on the evolution and dynamics of soil hydraulic properties over different timescales, and (4) improving the database on temporal changes and dynamics of flow paths.}, language = {en} } @article{vanderMeijTemmeWallingaetal.2017, author = {van der Meij, Marijn W. and Temme, Arnaud J. A. M. and Wallinga, J. and Hierold, W. and Sommer, Michael}, title = {Topography reconstruction of eroding landscapes - A case study from a hummocky ground moraine (CarboZALF-D)}, series = {Geomorphology : an international journal on pure and applied geomorphology}, volume = {295}, journal = {Geomorphology : an international journal on pure and applied geomorphology}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0169-555X}, doi = {10.1016/j.geomorph.2017.08.015}, pages = {758 -- 772}, year = {2017}, abstract = {Erosion processes, aggravated by human activity, have a large impact on the spatial variation of soil and topographic properties. Knowledge of the topography prior to human-induced erosion (paleotopography) in naturally stable landscapes is valuable for identifying vulnerable landscape positions and is required as starting point for erosion modelling exercises. However, developing accurate reconstructions of paleotopography provide a major challenge for geomorphologists. Here, we present a set of paleotopographies for a closed kettle hole catchment in north-east Germany (4 ha), obtained through different reconstruction approaches. Current soil and colluvium thickness, estimated from a dataset of 264 soil descriptions using Ordinary Kriging, were used as input for a mass balance, or were compared with a set of undisturbed soil thicknesses to estimate the amount of erosion. The performance of the different approaches was assessed with cross-validation and the count of mispredicted eroded, depositional or stable landscape positions. The paleotopographic reconstruction approach based on the average thickness of undisturbed soils in the study area showed the best performance. This thickness (1.00 m) is comparable to the average undisturbed soil thickness in the region and in line with global correlations of soil thickness as a function of rainfall and initial CaCO3 content. The performance of the different approaches depended more on mispredictions of landscape position due to the assumption of a spatially constant initial soil depth than on small variations in this depth. To conclude, we mention several methodological and practical points of attention for future topography reconstruction studies, concerning data quality and availability, spatial configuration of data and other processes affecting topography. (C) 2017 Elsevier B.V. All rights reserved.}, language = {en} }