@misc{GhaniSobelZeilingeretal.2021, author = {Ghani, Humaad and Sobel, Edward and Zeilinger, Gerold and Glodny, Johannes and Zapata, Sebastian and Irum, Irum}, title = {Palaeozoic and Pliocene tectonic evolution of the Salt Range constrained by low-temperature thermochronology}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {3}, issn = {1866-8372}, doi = {10.25932/publishup-56256}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-562567}, pages = {15}, year = {2021}, abstract = {The Salt Range in Pakistan exposes Precambrian to Pleistocene strata outcropping along the Salt Range Thrust (SRT). To better understand the in-situ Cambrian and Pliocene tectonic evolution of the Pakistan Subhimalaya, we have conducted low-temperature thermochronological analysis using apatite (U-Th-Sm)/He and fission track dating. We combine cooling ages from different samples located along the thrust front of the SRT into a thermal model that shows two major cooling events associated with rifting and regional erosion in the Late Palaeozoic and SRT activity since the Pliocene. Our results suggest that the SRT maintained a long-term average shortening rate of similar to 5-6 mm/yr and a high exhumation rate above the SRT ramp since similar to 4 Ma.}, language = {en} } @article{GhaniSobelZeilingeretal.2020, author = {Ghani, Humaad and Sobel, Edward and Zeilinger, Gerold and Glodny, Johannes and Zapata, Sebastian and Irum, Irum}, title = {Palaeozoic and Pliocene tectonic evolution of the Salt Range constrained by low-temperature thermochronology}, series = {Terra nova}, volume = {33}, journal = {Terra nova}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {0954-4879}, doi = {10.1111/ter.12515}, pages = {293 -- 305}, year = {2020}, abstract = {The Salt Range in Pakistan exposes Precambrian to Pleistocene strata outcropping along the Salt Range Thrust (SRT). To better understand the in-situ Cambrian and Pliocene tectonic evolution of the Pakistan Subhimalaya, we have conducted low-temperature thermochronological analysis using apatite (U-Th-Sm)/He and fission track dating. We combine cooling ages from different samples located along the thrust front of the SRT into a thermal model that shows two major cooling events associated with rifting and regional erosion in the Late Palaeozoic and SRT activity since the Pliocene. Our results suggest that the SRT maintained a long-term average shortening rate of similar to 5-6 mm/yr and a high exhumation rate above the SRT ramp since similar to 4 Ma.}, language = {en} } @misc{ZapataSobelDelPapaetal.2020, author = {Zapata, Sebastian and Sobel, Edward and Del Papa, Cecilia and Glodny, Johannes}, title = {Upper Plate Controls on the Formation of Broken Foreland Basins in the Andean Retroarc Between 26°S and 28°S}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {7}, issn = {1866-8372}, doi = {10.25932/publishup-52382}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-523823}, pages = {24}, year = {2020}, abstract = {Marked along-strike changes in stratigraphy, mountain belt morphology, basement exhumation, and deformation styles characterize the Andean retroarc; these changes have previously been related to spatiotemporal variations in the subduction angle. We modeled new apatite fission track and apatite (U-Th-Sm)/He data from nine ranges located between 26 degrees S and 28 degrees S. Using new and previously published data, we constructed a Cretaceous to Pliocene paleogeographic model that delineates a four-stage tectonic evolution: extensional tectonics during the Cretaceous (120-75 Ma), the formation of a broken foreland basin between 55 and 30 Ma, reheating due to burial beneath sedimentary rocks (18-13 Ma), and deformation, exhumation, and surface uplift during the Late Miocene and the Pliocene (13-3 Ma). Our model highlights how preexisting upper plate structures control the deformation patterns of broken foreland basins. Because retroarc deformation predates flat-slab subduction, we propose that slab anchoring may have been the precursor of Eocene-Oligocene compression in the Andean retroarc. Our model challenges models which consider broken foreland basins and retroarc deformation in the NW Argentinian Andes to be directly related to Miocene flat subduction.}, language = {en} } @article{ZapataSobelDelPapaetal.2020, author = {Zapata, Sebastian and Sobel, Edward and Del Papa, Cecilia and Glodny, Johannes}, title = {Upper Plate Controls on the Formation of Broken Foreland Basins in the Andean Retroarc Between 26°S and 28°S}, series = {Geochemistry, Geophysics, Geosystems}, volume = {21}, journal = {Geochemistry, Geophysics, Geosystems}, number = {7}, publisher = {John Wiley \& Sons, Inc.}, address = {New Jersey}, pages = {22}, year = {2020}, abstract = {Marked along-strike changes in stratigraphy, mountain belt morphology, basement exhumation, and deformation styles characterize the Andean retroarc; these changes have previously been related to spatiotemporal variations in the subduction angle. We modeled new apatite fission track and apatite (U-Th-Sm)/He data from nine ranges located between 26 degrees S and 28 degrees S. Using new and previously published data, we constructed a Cretaceous to Pliocene paleogeographic model that delineates a four-stage tectonic evolution: extensional tectonics during the Cretaceous (120-75 Ma), the formation of a broken foreland basin between 55 and 30 Ma, reheating due to burial beneath sedimentary rocks (18-13 Ma), and deformation, exhumation, and surface uplift during the Late Miocene and the Pliocene (13-3 Ma). Our model highlights how preexisting upper plate structures control the deformation patterns of broken foreland basins. Because retroarc deformation predates flat-slab subduction, we propose that slab anchoring may have been the precursor of Eocene-Oligocene compression in the Andean retroarc. Our model challenges models which consider broken foreland basins and retroarc deformation in the NW Argentinian Andes to be directly related to Miocene flat subduction.}, language = {en} }