@techreport{AgarwalBoessenkoolFischeretal.2016, author = {Agarwal, Ankit and Boessenkool, Berry and Fischer, Madlen and Hahn, Irene and K{\"o}hn, Lisei and Laudan, Jonas and Moran, Thomas and {\"O}zt{\"u}rk, Ugur and Riemer, Adrian and R{\"o}zer, Viktor and Sieg, Tobias and Vogel, Kristin and Wendi, Dadiyorto and Bronstert, Axel and Thieken, Annegret}, title = {Die Sturzflut in Braunsbach, Mai 2016}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-394881}, pages = {20}, year = {2016}, abstract = {Im Graduiertenkolleg NatRiskChange der Universit{\"a}t Potsdam und anderen Forschungseinrichtungen werden beobachtete sowie zuk{\"u}nftig m{\"o}gliche Ver{\"a}nderungen von Naturgefahren untersucht. Teil des strukturierten Doktorandenprogramms sind sogenannte Task-Force-Eins{\"a}tze, bei denen die Promovierende zeitlich begrenzt ein aktuelles Ereignis auswerten. Im Zuge dieser Aktivit{\"a}t wurde die Sturzflut vom 29.05.2016 in Braunsbach (Baden-W{\"u}rttemberg) untersucht. In diesem Bericht werden erste Auswertungen zur Einordnung der Niederschl{\"a}ge, zu den hydrologischen und geomorphologischen Prozessen im Einzugsgebiet des Orlacher Bachs sowie zu den verursachten Sch{\"a}den beleuchtet. Die Region war Zentrum extremer Regenf{\"a}lle in der Gr{\"o}ßenordnung von 100 mm innerhalb von 2 Stunden. Das 6 km² kleine Einzugsgebiet hat eine sehr schnelle Reaktionszeit, zumal bei vorges{\"a}ttigtem Boden. Im steilen Bachtal haben mehrere kleinere und gr{\"o}ßere Hangrutschungen {\"u}ber 8000 m³ Ger{\"o}ll, Schutt und Schwemmholz in das Gew{\"a}sser eingetragen und m{\"o}glicherweise kurzzeitige Aufstauungen und Durchbr{\"u}che verursacht. Neben den großen Wassermengen mit einer Abflussspitze in einer Gr{\"o}ßenordnung von 100 m³/s hat gerade die Geschiebefracht zu großen Sch{\"a}den an den Geb{\"a}uden entlang des Bachlaufs in Braunsbach gef{\"u}hrt.}, language = {de} } @misc{KuhlickeMassonKienzleretal.2020, author = {Kuhlicke, Christian and Masson, Torsten and Kienzler, Sarah and Sieg, Tobias and Thieken, Annegret and Kreibich, Heidi}, title = {Multiple flood experiences and social resilience}, series = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Zweitver{\"o}ffentlichungen der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {1}, issn = {1866-8372}, doi = {10.25932/publishup-51650}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-516500}, pages = {28}, year = {2020}, abstract = {Previous studies have explored the consequences of flood events for exposed households and companies by focusing on single flood events. Less is known about the consequences of experiencing repeated flood events for the resilience of households and companies. In this paper, we therefore explore how multiple floods experience affects the resilience of exposed households and companies. Resilience was made operational through individual appraisals of households and companies' ability to withstand and recover from material as well as health and psychological impacts of the 2013 flood in Germany. The paper is based on three different datasets including more than 2000 households and 300 companies that were affected by the 2013 flood. The surveys revealed that the resilience of households seems to increase, but only with regard to their subjectively appraised ability to withstand impacts on mobile goods and equipment (e.g., cars, TV, and radios). In regard to the ability of households to withstand overall financial consequences of repetitive floods, evidence for nonlinear (quadratic) trends can be found. With regard to psychological and health-related consequences, the findings are mixed but provide tentative evidence for eroding resilience among households. Companies' resilience increased with respect to material assets but appears to decrease with respect to ability to recover. We conclude by arguing that clear and operational definitions of resilience are required so that evidence-based resilience baselines can be established to assess whether resilience is eroding or improving over time.}, language = {en} } @article{KuhlickeMassonKienzleretal.2020, author = {Kuhlicke, Christian and Masson, Torsten and Kienzler, Sarah and Sieg, Tobias and Thieken, Annegret and Kreibich, Heidi}, title = {Multiple flood experiences and social resilience}, series = {Weather, Climate, and Society}, volume = {12}, journal = {Weather, Climate, and Society}, number = {1}, publisher = {American Meteorological Society}, address = {Boston}, issn = {1948-8327}, doi = {10.1175/WCAS-D-18-0069.1}, pages = {63 -- 88}, year = {2020}, abstract = {Previous studies have explored the consequences of flood events for exposed households and companies by focusing on single flood events. Less is known about the consequences of experiencing repeated flood events for the resilience of households and companies. In this paper, we therefore explore how multiple floods experience affects the resilience of exposed households and companies. Resilience was made operational through individual appraisals of households and companies' ability to withstand and recover from material as well as health and psychological impacts of the 2013 flood in Germany. The paper is based on three different datasets including more than 2000 households and 300 companies that were affected by the 2013 flood. The surveys revealed that the resilience of households seems to increase, but only with regard to their subjectively appraised ability to withstand impacts on mobile goods and equipment (e.g., cars, TV, and radios). In regard to the ability of households to withstand overall financial consequences of repetitive floods, evidence for nonlinear (quadratic) trends can be found. With regard to psychological and health-related consequences, the findings are mixed but provide tentative evidence for eroding resilience among households. Companies' resilience increased with respect to material assets but appears to decrease with respect to ability to recover. We conclude by arguing that clear and operational definitions of resilience are required so that evidence-based resilience baselines can be established to assess whether resilience is eroding or improving over time.}, language = {en} } @article{LaudanRoezerSiegetal.2017, author = {Laudan, Jonas and Roezer, Viktor and Sieg, Tobias and Vogel, Kristin and Thieken, Annegret}, title = {Damage assessment in Braunsbach 2016: data collection and analysis for an improved understanding of damaging processes during flash floods}, series = {Natural hazards and earth system sciences}, volume = {17}, journal = {Natural hazards and earth system sciences}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1561-8633}, doi = {10.5194/nhess-17-2163-2017}, pages = {2163 -- 2179}, year = {2017}, language = {en} } @misc{LaudanRoezerSiegetal.2017, author = {Laudan, Jonas and R{\"o}zer, Viktor and Sieg, Tobias and Vogel, Kristin and Thieken, Annegret}, title = {Damage assessment in Braunsbach 2016}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {653}, issn = {1866-8372}, doi = {10.25932/publishup-41839}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-418392}, pages = {17}, year = {2017}, abstract = {Flash floods are caused by intense rainfall events and represent an insufficiently understood phenomenon in Germany. As a result of higher precipitation intensities, flash floods might occur more frequently in future. In combination with changing land use patterns and urbanisation, damage mitigation, insurance and risk management in flash-flood-prone regions are becoming increasingly important. However, a better understanding of damage caused by flash floods requires ex post collection of relevant but yet sparsely available information for research. At the end of May 2016, very high and concentrated rainfall intensities led to severe flash floods in several southern German municipalities. The small town of Braunsbach stood as a prime example of the devastating potential of such events. Eight to ten days after the flash flood event, damage assessment and data collection were conducted in Braunsbach by investigating all affected buildings and their surroundings. To record and store the data on site, the open-source software bundle KoBoCollect was used as an efficient and easy way to gather information. Since the damage driving factors of flash floods are expected to differ from those of riverine flooding, a post-hoc data analysis was performed, aiming to identify the influence of flood processes and building attributes on damage grades, which reflect the extent of structural damage. Data analyses include the application of random forest, a random general linear model and multinomial logistic regression as well as the construction of a local impact map to reveal influences on the damage grades. Further, a Spearman's Rho correlation matrix was calculated. The results reveal that the damage driving factors of flash floods differ from those of riverine floods to a certain extent. The exposition of a building in flow direction shows an especially strong correlation with the damage grade and has a high predictive power within the constructed damage models. Additionally, the results suggest that building materials as well as various building aspects, such as the existence of a shop window and the surroundings, might have an effect on the resulting damage. To verify and confirm the outcomes as well as to support future mitigation strategies, risk management and planning, more comprehensive and systematic data collection is necessary.}, language = {en} } @article{SairamBrillSiegetal.2021, author = {Sairam, Nivedita and Brill, Fabio Alexander and Sieg, Tobias and Farrag, Mostafa and Kellermann, Patric and Viet Dung Nguyen, and L{\"u}dtke, Stefan and Merz, Bruno and Schr{\"o}ter, Kai and Vorogushyn, Sergiy and Kreibich, Heidi}, title = {Process-based flood risk assessment for Germany}, series = {Earth's future / American Geophysical Union}, volume = {9}, journal = {Earth's future / American Geophysical Union}, number = {10}, publisher = {Wiley-Blackwell}, address = {Hoboken, NJ}, issn = {2328-4277}, doi = {10.1029/2021EF002259}, pages = {12}, year = {2021}, abstract = {Large-scale flood risk assessments are crucial for decision making, especially with respect to new flood defense schemes, adaptation planning and estimating insurance premiums. We apply the process-based Regional Flood Model (RFM) to simulate a 5000-year flood event catalog for all major catchments in Germany and derive risk curves based on the losses per economic sector. The RFM uses a continuous process simulation including a multisite, multivariate weather generator, a hydrological model considering heterogeneous catchment processes, a coupled 1D-2D hydrodynamic model considering dike overtopping and hinterland storage, spatially explicit sector-wise exposure data and empirical multi-variable loss models calibrated for Germany. For all components, uncertainties in the data and models are estimated. We estimate the median Expected Annual Damage (EAD) and Value at Risk at 99.5\% confidence for Germany to be euro0.529 bn and euro8.865 bn, respectively. The commercial sector dominates by making about 60\% of the total risk, followed by the residential sector. The agriculture sector gets affected by small return period floods and only contributes to less than 3\% to the total risk. The overall EAD is comparable to other large-scale estimates. However, the estimation of losses for specific return periods is substantially improved. The spatial consistency of the risk estimates avoids the large overestimation of losses for rare events that is common in other large-scale assessments with homogeneous return periods. Thus, the process-based, spatially consistent flood risk assessment by RFM is an important step forward and will serve as a benchmark for future German-wide flood risk assessments.}, language = {en} } @article{SchoppaSiegVogeletal.2020, author = {Schoppa, Lukas and Sieg, Tobias and Vogel, Kristin and Z{\"o}ller, Gert and Kreibich, Heidi}, title = {Probabilistic flood loss models for companies}, series = {Water resources research}, volume = {56}, journal = {Water resources research}, number = {9}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0043-1397}, doi = {10.1029/2020WR027649}, pages = {19}, year = {2020}, abstract = {Flood loss modeling is a central component of flood risk analysis. Conventionally, this involves univariable and deterministic stage-damage functions. Recent advancements in the field promote the use of multivariable and probabilistic loss models, which consider variables beyond inundation depth and account for prediction uncertainty. Although companies contribute significantly to total loss figures, novel modeling approaches for companies are lacking. Scarce data and the heterogeneity among companies impede the development of company flood loss models. We present three multivariable flood loss models for companies from the manufacturing, commercial, financial, and service sector that intrinsically quantify prediction uncertainty. Based on object-level loss data (n = 1,306), we comparatively evaluate the predictive capacity of Bayesian networks, Bayesian regression, and random forest in relation to deterministic and probabilistic stage-damage functions, serving as benchmarks. The company loss data stem from four postevent surveys in Germany between 2002 and 2013 and include information on flood intensity, company characteristics, emergency response, private precaution, and resulting loss to building, equipment, and goods and stock. We find that the multivariable probabilistic models successfully identify and reproduce essential relationships of flood damage processes in the data. The assessment of model skill focuses on the precision of the probabilistic predictions and reveals that the candidate models outperform the stage-damage functions, while differences among the proposed models are negligible. Although the combination of multivariable and probabilistic loss estimation improves predictive accuracy over the entire data set, wide predictive distributions stress the necessity for the quantification of uncertainty.}, language = {en} } @phdthesis{Sieg2018, author = {Sieg, Tobias}, title = {Reliability of flood damage estimations across spatial scales}, doi = {10.25932/publishup-42616}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-426161}, school = {Universit{\"a}t Potsdam}, pages = {XIII, 115}, year = {2018}, abstract = {Extreme Naturereignisse sind ein integraler Bestandteil der Natur der Erde. Sie werden erst dann zu Gefahren f{\"u}r die Gesellschaft, wenn sie diesen Ereignissen ausgesetzt ist. Dann allerdings k{\"o}nnen Naturgefahren verheerende Folgen f{\"u}r die Gesellschaft haben. Besonders hydro-meteorologische Gefahren wie zum Beispiel Flusshochwasser, Starkregenereignisse, Winterst{\"u}rme, Orkane oder Tornados haben ein hohes Schadenspotential und treten rund um den Globus auf. Einhergehend mit einer immer w{\"a}rmer werdenden Welt, werden auch Extremwetterereignisse, welche potentiell Naturgefahren ausl{\"o}sen k{\"o}nnen, immer wahrscheinlicher. Allerdings tr{\"a}gt nicht nur eine sich ver{\"a}ndernde Umwelt zur Erh{\"o}hung des Risikos von Naturgefahren bei, sondern auch eine sich ver{\"a}ndernde Gesellschaft. Daher ist ein angemessenes Risikomanagement erforderlich um die Gesellschaft auf jeder r{\"a}umlichen Ebene an diese Ver{\"a}nderungen anzupassen. Ein essentieller Bestandteil dieses Managements ist die Absch{\"a}tzung der {\"o}konomischen Auswirkungen der Naturgefahren. Bisher allerdings fehlen verl{\"a}ssliche Methoden um die Auswirkungen von hydro-meteorologischen Gefahren abzusch{\"a}tzen. Ein Hauptbestandteil dieser Arbeit ist daher die Entwicklung und Anwendung einer neuen Methode, welche die Verl{\"a}sslichkeit der Schadenssch{\"a}tzung verbessert. Die Methode wurde beispielhaft zur Sch{\"a}tzung der {\"o}konomischen Auswirkungen eines Flusshochwassers auf einzelne Unternehmen bis hin zu den Auswirkungen auf das gesamte Wirtschaftssystem Deutschlands erfolgreich angewendet. Bestehende Methoden geben meist wenig Information {\"u}ber die Verl{\"a}sslichkeit ihrer Sch{\"a}tzungen. Da diese Informationen Entscheidungen zur Anpassung an das Risiko erleichtern, wird die Verl{\"a}sslichkeit der Schadenssch{\"a}tzungen mit der neuen Methode dargestellt. Die Verl{\"a}sslichkeit bezieht sich dabei nicht nur auf die Schadenssch{\"a}tzung selber, sondern auch auf die Annahmen, die {\"u}ber betroffene Geb{\"a}ude gemacht werden. Nach diesem Prinzip kann auch die Verl{\"a}sslichkeit von Annahmen {\"u}ber die Zukunft dargestellt werden, dies ist ein wesentlicher Aspekt f{\"u}r Prognosen. Die Darstellung der Verl{\"a}sslichkeit und die erfolgreiche Anwendung zeigt das Potential der Methode zur Verwendung von Analysen f{\"u}r gegenw{\"a}rtige und zuk{\"u}nftige hydro-meteorologische Gefahren.}, language = {en} } @article{SiegSchinkoVogeletal.2019, author = {Sieg, Tobias and Schinko, Thomas and Vogel, Kristin and Mechler, Reinhard and Merz, Bruno and Kreibich, Heidi}, title = {Integrated assessment of short-term direct and indirect economic flood impacts including uncertainty quantification}, series = {PLoS ONE}, volume = {14}, journal = {PLoS ONE}, number = {4}, publisher = {Public Library of Science}, address = {San Francisco}, issn = {1932-6203}, doi = {10.1371/journal.pone.0212932}, pages = {21}, year = {2019}, abstract = {Understanding and quantifying total economic impacts of flood events is essential for flood risk management and adaptation planning. Yet, detailed estimations of joint direct and indirect flood-induced economic impacts are rare. In this study an innovative modeling procedure for the joint assessment of short-term direct and indirect economic flood impacts is introduced. The procedure is applied to 19 economic sectors in eight federal states of Germany after the flood events in 2013. The assessment of the direct economic impacts is object-based and considers uncertainties associated with the hazard, the exposed objects and their vulnerability. The direct economic impacts are then coupled to a supply-side Input-Output-Model to estimate the indirect economic impacts. The procedure provides distributions of direct and indirect economic impacts which capture the associated uncertainties. The distributions of the direct economic impacts in the federal states are plausible when compared to reported values. The ratio between indirect and direct economic impacts shows that the sectors Manufacturing, Financial and Insurance activities suffered the most from indirect economic impacts. These ratios also indicate that indirect economic impacts can be almost as high as direct economic impacts. They differ strongly between the economic sectors indicating that the application of a single factor as a proxy for the indirect impacts of all economic sectors is not appropriate.}, language = {en} } @misc{SiegShinkoVogeletal.2019, author = {Sieg, Tobias and Shinko, Thomas and Vogel, Kristin and Mechler, Reinhard and Merz, Bruno and Kreibich, Heidi}, title = {Integrated assessment of short-term direct and indirect economic flood impacts including uncertainty quantification}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {708}, doi = {10.25932/publishup-42911}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-429119}, pages = {21}, year = {2019}, abstract = {Understanding and quantifying total economic impacts of flood events is essential for flood risk management and adaptation planning. Yet, detailed estimations of joint direct and indirect flood-induced economic impacts are rare. In this study an innovative modeling procedure for the joint assessment of short-term direct and indirect economic flood impacts is introduced. The procedure is applied to 19 economic sectors in eight federal states of Germany after the flood events in 2013. The assessment of the direct economic impacts is object-based and considers uncertainties associated with the hazard, the exposed objects and their vulnerability. The direct economic impacts are then coupled to a supply-side Input-Output-Model to estimate the indirect economic impacts. The procedure provides distributions of direct and indirect economic impacts which capture the associated uncertainties. The distributions of the direct economic impacts in the federal states are plausible when compared to reported values. The ratio between indirect and direct economic impacts shows that the sectors Manufacturing, Financial and Insurance activities suffered the most from indirect economic impacts. These ratios also indicate that indirect economic impacts can be almost as high as direct economic impacts. They differ strongly between the economic sectors indicating that the application of a single factor as a proxy for the indirect impacts of all economic sectors is not appropriate.}, language = {en} }