@article{ChenPerssonGrebeetal.2018, author = {Chen, Hsiang-Wen and Persson, Staffan and Grebe, Markus and McFarlane, Heather E.}, title = {Cellulose synthesis during cell plate assembly}, series = {Physiologia plantarum}, volume = {164}, journal = {Physiologia plantarum}, number = {1}, publisher = {Wiley}, address = {Hoboken}, issn = {0031-9317}, doi = {10.1111/ppl.12703}, pages = {17 -- 26}, year = {2018}, abstract = {The plant cell wall surrounds and protects the cells. To divide, plant cells must synthesize a new cell wall to separate the two daughter cells. The cell plate is a transient polysaccharide-based compartment that grows between daughter cells and gives rise to the new cell wall. Cellulose constitutes a key component of the cell wall, and mutants with defects in cellulose synthesis commonly share phenotypes with cytokinesis-defective mutants. However, despite the importance of cellulose in the cell plate and the daughter cell wall, many open questions remain regarding the timing and regulation of cellulose synthesis during cell division. These questions represent a critical gap in our knowledge of cell plate assembly, cell division and growth. Here, we review what is known about cellulose synthesis at the cell plate and in the newly formed cross-wall and pose key questions about the molecular mechanisms that govern these processes. We further provide an outlook discussing outstanding questions and possible future directions for this field of research.}, language = {en} } @article{FrescatadaRosaStanislasBackuesetal.2014, author = {Frescatada-Rosa, Marcia and Stanislas, Thomas and Backues, Steven K. and Reichardt, Ilka and Men, Shuzhen and Boutte, Yohann and Juergens, Gerd and Moritz, Thomas and Bednarek, Sebastian York and Grebe, Markus}, title = {High lipid order of Arabidopsis cell-plate membranes mediated by sterol and Dynamin-Related Protein 1A function}, series = {The plant journal}, volume = {80}, journal = {The plant journal}, number = {5}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0960-7412}, doi = {10.1111/tpj.12674}, pages = {745 -- 757}, year = {2014}, abstract = {Membranes of eukaryotic cells contain high lipid-order sterol-rich domains that are thought to mediate temporal and spatial organization of cellular processes. Sterols are crucial for execution of cytokinesis, the last stage of cell division, in diverse eukaryotes. The cell plate of higher-plant cells is the membrane structure that separates daughter cells during somatic cytokinesis. Cell-plate formation in Arabidopsis relies on sterol- and DYNAMIN-RELATED PROTEIN1A (DRP1A)-dependent endocytosis. However, functional relationships between lipid membrane order or lipid packing and endocytic machinery components during eukaryotic cytokinesis have not been elucidated. Using ratiometric live imaging of lipid order-sensitive fluorescent probes, we show that the cell plate of Arabidopsis thaliana represents a dynamic, high lipid-order membrane domain. The cell-plate lipid order was found to be sensitive to pharmacological and genetic alterations of sterol composition. Sterols co-localize with DRP1A at the cell plate, and DRP1A accumulates in detergent-resistant membrane fractions. Modifications of sterol concentration or composition reduce cell-plate membrane order and affect DRP1A localization. Strikingly, DRP1A function itself is essential for high lipid order at the cell plate. Our findings provide evidence that the cell plate represents a high lipid-order domain, and pave the way to explore potential feedback between lipid order and function of dynamin-related proteins during cytokinesis.}, language = {en} } @article{GendreBaralDangetal.2019, author = {Gendre, Delphine and Baral, Anirban and Dang, Xie and Esnay, Nicolas and Boutte, Yohann and Stanislas, Thomas and Vain, Thomas and Claverol, Stephane and Gustavsson, Anna and Lin, Deshu and Grebe, Markus and Bhalerao, Rishikesh P.}, title = {Rho-of-plant activated root hair formation requires Arabidopsis YIP4a/b gene function}, series = {Development : Company of Biologists}, volume = {146}, journal = {Development : Company of Biologists}, number = {5}, publisher = {The Company of Biologists}, address = {Cambridge}, issn = {0950-1991}, doi = {10.1242/dev.168559}, pages = {7}, year = {2019}, abstract = {Root hairs are protrusions from root epidermal cells with crucial roles in plant soil interactions. Although much is known about patterning, polarity and tip growth of root hairs, contributions of membrane trafficking to hair initiation remain poorly understood. Here, we demonstrate that the trans-Golgi network-localized YPT-INTERACTING PROTEIN 4a and YPT-INTERACTING PROTEIN 4b (YIP4a/b) contribute to activation and plasma membrane accumulation of Rho-of-plant (ROP) small GTPases during hair initiation, identifying YIP4a/b as central trafficking components in ROP-dependent root hair formation.}, language = {en} } @article{KieferClaesNzayisengaetal.2015, author = {Kiefer, Christian S. and Claes, Andrea R. and Nzayisenga, Jean-Claude and Pietra, Stefano and Stanislas, Thomas and Hueser, Anke and Ikeda, Yoshihisa and Grebe, Markus}, title = {Arabidopsis AIP1-2 restricted by WER-mediated patterning modulates planar polarity}, series = {Development : Company of Biologists}, volume = {142}, journal = {Development : Company of Biologists}, number = {1}, publisher = {Company of Biologists Limited}, address = {Cambridge}, issn = {0950-1991}, doi = {10.1242/dev.111013}, pages = {151 -- 161}, year = {2015}, abstract = {The coordination of cell polarity within the plane of the tissue layer (planar polarity) is crucial for the development of diverse multicellular organisms. Small Rac/Rho-family GTPases and the actin cytoskeleton contribute to planar polarity formation at sites of polarity establishment in animals and plants. Yet, upstream pathways coordinating planar polarity differ strikingly between kingdoms. In the root of Arabidopsis thaliana, a concentration gradient of the phytohormone auxin coordinates polar recruitment of Rho-of-plant (ROP) to sites of polar epidermal hair initiation. However, little is known about cytoskeletal components and interactions that contribute to this planar polarity or about their relation to the patterning machinery. Here, we show that ACTIN7 (ACT7) represents a main actin isoform required for planar polarity of root hair positioning, interacting with the negative modulator ACTIN-INTERACTING PROTEIN1-2 (AIP1-2). ACT7, AIP1-2 and their genetic interaction are required for coordinated planar polarity of ROP downstream of ethylene signalling. Strikingly, AIP1-2 displays hair cell file-enriched expression, restricted by WEREWOLF (WER)-dependent patterning and modified by ethylene and auxin action. Hence, our findings reveal AIP1-2, expressed under control of the WER-dependent patterning machinery and the ethylene signalling pathway, as a modulator of actin-mediated planar polarity.}, language = {en} } @article{KieferClaesNzayisengaetal.2015, author = {Kiefer, Christian S. and Claes, Andrea R. and Nzayisenga, Jean-Claude and Pietra, Stefano and Stanislas, Thomas and Ikeda, Yoshihisa and Grebe, Markus}, title = {Arabidopsis AIP1-2 restricted by WER-mediated patterning modulates planar polarity}, series = {Development}, journal = {Development}, number = {142}, doi = {doi: 10.1242/dev.111013}, pages = {151 -- 161}, year = {2015}, abstract = {The coordination of cell polarity within the plane of the tissue layer (planar polarity) is crucial for the development of diverse multicellular organisms. Small Rac/Rho-family GTPases and the actin cytoskeleton contribute to planar polarity formation at sites of polarity establishment in animals and plants. Yet, upstream pathways coordinating planar polarity differ strikingly between kingdoms. In the root of Arabidopsis thaliana, a concentration gradient of the phytohormone auxin coordinates polar recruitment of Rho-of-plant (ROP) to sites of polar epidermal hair initiation. However, little is known about cytoskeletal components and interactions that contribute to this planar polarity or about their relation to the patterning machinery. Here, we show that ACTIN7 (ACT7) represents a main actin isoform required for planar polarity of root hair positioning, interacting with the negative modulator ACTIN-INTERACTING PROTEIN1-2 (AIP1-2). ACT7, AIP1-2 and their genetic interaction are required for coordinated planar polarity of ROP downstream of ethylene signalling. Strikingly, AIP1-2 displays hair cell file-enriched expression, restricted by WEREWOLF (WER)-dependent patterning and modified by ethylene and auxin action. Hence, our findings reveal AIP1-2, expressed under control of the WER-dependent patterning machinery and the ethylene signalling pathway, as a modulator of actin-mediated planar polarity.}, language = {en} } @article{KrupinskiBozorgLarssonetal.2016, author = {Krupinski, Pawel and Bozorg, Behruz and Larsson, Andre and Pietra, Stefano and Grebe, Markus and J{\"o}nsson, Henrik}, title = {A Model Analysis of Mechanisms for Radial Microtubular Patterns at Root Hair Initiation Sites}, series = {Frontiers in plant science}, volume = {7}, journal = {Frontiers in plant science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2016.01560}, pages = {12}, year = {2016}, abstract = {Plant cells have two main modes of growth generating anisotropic structures. Diffuse growth where whole cell walls extend in specific directions, guided by anisotropically positioned cellulose fibers, and tip growth, with inhomogeneous addition of new cell wall material at the tip of the structure. Cells are known to regulate these processes via molecular signals and the cytoskeleton. Mechanical stress has been proposed to provide an input to the positioning of the cellulose fibers via cortical microtubules in diffuse growth. In particular, a stress feedback model predicts a circumferential pattern of fibers surrounding apical tissues and growing primordia, guided by the anisotropic curvature in such tissues. In contrast, during the initiation of tip growing root hairs, a star-like radial pattern has recently been observed. Here, we use detailed finite element models to analyze how a change in mechanical properties at the root hair initiation site can lead to star-like stress patterns in order to understand whether a stress-based feedback model can also explain the microtubule patterns seen during root hair initiation. We show that two independent mechanisms, individually or combined, can be sufficient to generate radial patterns. In the first, new material is added locally at the position of the root hair. In the second, increased tension in the initiation area provides a mechanism. Finally, we describe how a molecular model of Rho-of-plant (ROP) GTPases activation driven by auxin can position a patch of activated ROP protein basally along a 2D root epidermal cell plasma membrane, paving the way for models where mechanical and molecular mechanisms cooperate in the initial placement and outgrowth of root hairs.}, language = {en} } @misc{KrupinskiBozorgLarssonetal.2016, author = {Krupinski, Pawel and Bozorg, Behruz and Larsson, Andr{\´e} and Pietra, Stefano and Grebe, Markus and J{\"o}nsson, Henrik}, title = {A model analysis of mechanisms for radial microtubular patterns at root hair initiation sites}, series = {Frontiers in plant science}, journal = {Frontiers in plant science}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407181}, pages = {12}, year = {2016}, abstract = {Plant cells have two main modes of growth generating anisotropic structures. Diffuse growth where whole cell walls extend in specific directions, guided by anisotropically positioned cellulose fibers, and tip growth, with inhomogeneous addition of new cell wall material at the tip of the structure. Cells are known to regulate these processes via molecular signals and the cytoskeleton. Mechanical stress has been proposed to provide an input to the positioning of the cellulose fibers via cortical microtubules in diffuse growth. In particular, a stress feedback model predicts a circumferential pattern of fibers surrounding apical tissues and growing primordia, guided by the anisotropic curvature in such tissues. In contrast, during the initiation of tip growing root hairs, a star-like radial pattern has recently been observed. Here, we use detailed finite element models to analyze how a change in mechanical properties at the root hair initiation site can lead to star-like stress patterns in order to understand whether a stress-based feedback model can also explain the microtubule patterns seen during root hair initiation. We show that two independent mechanisms, individually or combined, can be sufficient to generate radial patterns. In the first, new material is added locally at the position of the root hair. In the second, increased tension in the initiation area provides a mechanism. Finally, we describe how a molecular model of Rho-of-plant (ROP) GTPases activation driven by auxin can position a patch of activated ROP protein basally along a 2D root epidermal cell plasma membrane, paving the way for models where mechanical and molecular mechanisms cooperate in the initial placement and outgrowth of root hairs.}, language = {en} } @article{MaoAryalLangeneckeretal.2017, author = {Mao, Hailiang and Aryal, Bibek and Langenecker, Tobias and Hagmann, Jorg and Geisler, Markus and Grebe, Markus}, title = {Arabidopsis BTB/POZ protein-dependent PENETRATION3 trafficking and disease susceptibility}, series = {Nature plants}, volume = {3}, journal = {Nature plants}, publisher = {Nature Publ. Group}, address = {London}, issn = {2055-026X}, doi = {10.1038/s41477-017-0039-z}, pages = {854 -- 858}, year = {2017}, abstract = {The outermost cell layer of plant roots (epidermis) constantly encounters environmental challenges. The epidermal outer plasma membrane domain harbours the PENETRATION3 (PEN3)/ABCG36/PDR8 ATP-binding cassette transporter that confers non-host resistance to several pathogens. Here, we show that the Arabidopsis ENDOPLASMIC RETICULUM-ARRESTED PEN3 (EAP3) BTB/POZ-domain protein specifically mediates PEN3 exit from the endoplasmic reticulum and confers resistance to a root-penetrating fungus, providing prime evidence for BTB/POZ-domain protein-dependent membrane trafficking underlying disease resistance.}, language = {en} } @misc{MaoNakamuraViottietal.2016, author = {Mao, Hailiang and Nakamura, Moritaka and Viotti, Corrado and Grebe, Markus}, title = {A framework for lateral membrane trafficking and polar tethering of the PEN3 ATP-Binding cassette transporter}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {909}, issn = {1866-8372}, doi = {10.25932/publishup-44130}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-441302}, pages = {2245 -- 2260}, year = {2016}, abstract = {The outermost cell layer of plants, the epidermis, and its outer (lateral) membrane domain facing the environment are continuously challenged by biotic and abiotic stresses. Therefore, the epidermis and the outer membrane domain provide important selective and protective barriers. However, only a small number of specifically outer membrane-localized proteins are known. Similarly, molecular mechanisms underlying the trafficking and the polar placement of outer membrane domain proteins require further exploration. Here, we demonstrate that ACTIN7 (ACT7) mediates trafficking of the PENETRATION3 (PEN3) outer membrane protein from the trans-Golgi network (TGN) to the plasma membrane in the root epidermis of Arabidopsis (Arabidopsis thaliana) and that actin function contributes to PEN3 endocytic recycling. In contrast to such generic ACT7-dependent trafficking from the TGN, the EXOCYST84b (EXO84b) tethering factor mediates PEN3 outer-membrane polarity. Moreover, precise EXO84b placement at the outer membrane domain itself requires ACT7 function. Hence, our results uncover spatially and mechanistically distinct requirements for ACT7 function during outer lateral membrane cargo trafficking and polarity establishment. They further identify an exocyst tethering complex mediator of outer lateral membrane cargo polarity.}, language = {en} } @article{MaoNakamuraViottietal.2016, author = {Mao, Hailiang and Nakamura, Moritaka and Viotti, Corrado and Grebe, Markus}, title = {A Framework for Lateral Membrane Trafficking and Polar Tethering of the PEN3 ATP-Binding Cassette Transporter}, series = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, volume = {172}, journal = {Plant physiology : an international journal devoted to physiology, biochemistry, cellular and molecular biology, biophysics and environmental biology of plants}, publisher = {American Society of Plant Physiologists}, address = {Rockville}, issn = {0032-0889}, doi = {10.1104/pp.16.01252}, pages = {2245 -- 2260}, year = {2016}, abstract = {The outermost cell layer of plants, the epidermis, and its outer (lateral) membrane domain facing the environment are continuously challenged by biotic and abiotic stresses. Therefore, the epidermis and the outer membrane domain provide important selective and protective barriers. However, only a small number of specifically outer membrane-localized proteins are known. Similarly, molecular mechanisms underlying the trafficking and the polar placement of outer membrane domain proteins require further exploration. Here, we demonstrate that ACTIN7 (ACT7) mediates trafficking of the PENETRATION3 (PEN3) outer membrane protein from the trans-Golgi network (TGN) to the plasma membrane in the root epidermis of Arabidopsis (Arabidopsis thaliana) and that actin function contributes to PEN3 endocytic recycling. In contrast to such generic ACT7-dependent trafficking from the TGN, the EXOCYST84b (EXO84b) tethering factor mediates PEN3 outer-membrane polarity. Moreover, precise EXO84b placement at the outer membrane domain itself requires ACT7 function. Hence, our results uncover spatially and mechanistically distinct requirements for ACT7 function during outer lateral membrane cargo trafficking and polarity establishment. They further identify an exocyst tethering complex mediator of outer lateral membrane cargo polarity.}, language = {en} }