@article{RadosavljevicLantuitKnoblauchetal.2022, author = {Radosavljevic, Boris and Lantuit, Hugues and Knoblauch, Christian and Couture, Nicole and Herzschuh, Ulrike and Fritz, Michael}, title = {Arctic nearshore sediment dynamics - an example from Herschel Island - Qikiqtaruk, Canada}, series = {Journal of marine science and engineering}, volume = {10}, journal = {Journal of marine science and engineering}, number = {11}, publisher = {MDPI}, address = {Basel}, issn = {2077-1312}, doi = {10.3390/jmse10111589}, pages = {18}, year = {2022}, abstract = {Increasing arctic coastal erosion rates imply a greater release of sediments and organic matter into the coastal zone. With 213 sediment samples taken around Herschel Island-Qikiqtaruk, Canadian Beaufort Sea, we aimed to gain new insights on sediment dynamics and geochemical properties of a shallow arctic nearshore zone. Spatial characteristics of nearshore sediment texture (moderately to poorly sorted silt) are dictated by hydrodynamic processes, but ice-related processes also play a role. We determined organic matter (OM) distribution and inferred the origin and quality of organic carbon by C/N ratios and stable carbon isotopes delta C-13. The carbon content was higher offshore and in sheltered areas (mean: 1.0 wt.\%., S.D.: 0.9) and the C/N ratios also showed a similar spatial pattern (mean: 11.1, S.D.: 3.1), while the delta C-13 (mean: -26.4 parts per thousand VPDB, S.D.: 0.4) distribution was more complex. We compared the geochemical parameters of our study with terrestrial and marine samples from other studies using a bootstrap approach. Sediments of the current study contained 6.5 times and 1.8 times less total organic carbon than undisturbed and disturbed terrestrial sediments, respectively. Therefore, degradation of OM and separation of carbon pools take place on land and continue in the nearshore zone, where OM is leached, mineralized, or transported beyond the study area.}, language = {en} } @misc{RadosavljevicLantuitPollardetal.2016, author = {Radosavljevic, Boris and Lantuit, Hugues and Pollard, Wayne and Overduin, Pier Paul and Couture, Nicole and Sachs, Torsten and Helm, Veit and Fritz, Michael}, title = {Erosion and flooding-threats to coastal Infrastructure in the Arctic}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {996}, issn = {1866-8372}, doi = {10.25932/publishup-43227}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-432279}, pages = {18}, year = {2016}, abstract = {Arctic coastal infrastructure and cultural and archeological sites are increasingly vulnerable to erosion and flooding due to amplified warming of the Arctic, sea level rise, lengthening of open water periods, and a predicted increase in frequency of major storms. Mitigating these hazards necessitates decision-making tools at an appropriate scale. The objectives of this paper are to provide such a tool by assessing potential erosion and flood hazards at Herschel Island, a UNESCO World Heritage candidate site. This study focused on Simpson Point and the adjacent coastal sections because of their archeological, historical, and cultural significance. Shoreline movement was analyzed using the Digital Shoreline Analysis System (DSAS) after digitizing shorelines from 1952, 1970, 2000, and 2011. For purposes of this analysis, the coast was divided in seven coastal reaches (CRs) reflecting different morphologies and/or exposures. Using linear regression rates obtained from these data, projections of shoreline position were made for 20 and 50 years into the future. Flood hazard was assessed using a least cost path analysis based on a high-resolution light detection and ranging (LiDAR) dataset and current Intergovernmental Panel on Climate Change sea level estimates. Widespread erosion characterizes the study area. The rate of shoreline movement in different periods of the study ranges from -5.5 to 2.7 m·a⁻¹ (mean -0.6 m·a⁻¹). Mean coastal retreat decreased from -0.6 m·a⁻¹ to -0.5 m·a⁻¹, for 1952-1970 and 1970-2000, respectively, and increased to -1.3 m·a⁻¹ in the period 2000-2011. Ice-rich coastal sections most exposed to wave attack exhibited the highest rates of coastal retreat. The geohazard map combines shoreline projections and flood hazard analyses to show that most of the spit area has extreme or very high flood hazard potential, and some buildings are vulnerable to coastal erosion. This study demonstrates that transgressive forcing may provide ample sediment for the expansion of depositional landforms, while growing more susceptible to overwash and flooding.}, language = {en} } @misc{RadosavljevicLantuitPollardetal.2016, author = {Radosavljevic, Boris and Lantuit, Hugues and Pollard, Wayne and Overduin, Pier Paul and Couture, Nicole and Sachs, Torsten and Helm, Veit and Fritz, Michael}, title = {Erosion and Flooding - Threats to Coastal Infrastructure in the Arctic: A Case Study from Herschel Island, Yukon Territory, Canada (vol 39, pg 900, 2016)}, series = {Estuaries and coasts : journal of the Estuarine Research Federation}, volume = {39}, journal = {Estuaries and coasts : journal of the Estuarine Research Federation}, publisher = {Springer}, address = {New York}, issn = {1559-2723}, doi = {10.1007/s12237-016-0115-z}, pages = {1294 -- 1295}, year = {2016}, language = {en} } @article{RadosavljevicLantuitPollardetal.2016, author = {Radosavljevic, Boris and Lantuit, Hugues and Pollard, Wayne and Overduin, Pier Paul and Couture, Nicole and Sachs, Torsten and Helm, Veit and Fritz, Michael}, title = {Erosion and Flooding-Threats to Coastal Infrastructure in the Arctic: A Case Study from Herschel Island, Yukon Territory, Canada}, series = {Estuaries and coasts : journal of the Estuarine Research Federation}, volume = {39}, journal = {Estuaries and coasts : journal of the Estuarine Research Federation}, publisher = {Springer}, address = {New York}, issn = {1559-2723}, doi = {10.1007/s12237-015-0046-0}, pages = {900 -- 915}, year = {2016}, abstract = {Arctic coastal infrastructure and cultural and archeological sites are increasingly vulnerable to erosion and flooding due to amplified warming of the Arctic, sea level rise, lengthening of open water periods, and a predicted increase in frequency of major storms. Mitigating these hazards necessitates decision-making tools at an appropriate scale. The objectives of this paper are to provide such a tool by assessing potential erosion and flood hazards at Herschel Island, a UNESCO World Heritage candidate site. This study focused on Simpson Point and the adjacent coastal sections because of their archeological, historical, and cultural significance. Shoreline movement was analyzed using the Digital Shoreline Analysis System (DSAS) after digitizing shorelines from 1952, 1970, 2000, and 2011. For purposes of this analysis, the coast was divided in seven coastal reaches (CRs) reflecting different morphologies and/or exposures. Using linear regression rates obtained from these data, projections of shoreline position were made for 20 and 50 years into the future. Flood hazard was assessed using a least cost path analysis based on a high-resolution light detection and ranging (LiDAR) dataset and current Intergovernmental Panel on Climate Change sea level estimates. Widespread erosion characterizes the study area. The rate of shoreline movement in different periods of the study ranges from -5.5 to 2.7 mI double dagger a(-1) (mean -0.6 mI double dagger a(-1)). Mean coastal retreat decreased from -0.6 mI double dagger a(-1) to -0.5 mI double dagger a(-1), for 1952-1970 and 1970-2000, respectively, and increased to -1.3 mI double dagger a(-1) in the period 2000-2011. Ice-rich coastal sections most exposed to wave attack exhibited the highest rates of coastal retreat. The geohazard map combines shoreline projections and flood hazard analyses to show that most of the spit area has extreme or very high flood hazard potential, and some buildings are vulnerable to coastal erosion. This study demonstrates that transgressive forcing may provide ample sediment for the expansion of depositional landforms, while growing more susceptible to overwash and flooding.}, language = {en} } @article{RamageIrrgangHerzschuhetal.2017, author = {Ramage, Justine Lucille and Irrgang, Anna Maria and Herzschuh, Ulrike and Morgenstern, Anne and Couture, Nicole and Lantuit, Hugues}, title = {Terrain controls on the occurrence of coastal retrogressive thaw slumps along the Yukon Coast, Canada}, series = {Journal of geophysical research : Earth surface}, volume = {122}, journal = {Journal of geophysical research : Earth surface}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9003}, doi = {10.1002/2017JF004231}, pages = {1619 -- 1634}, year = {2017}, abstract = {Retrogressive thaw slumps (RTSs) are among the most active landforms in the Arctic; their number has increased significantly over the past decades. While processes initiating discrete RTSs are well identified, the major terrain controls on the development of coastal RTSs at a regional scale are not yet defined. Our research reveals the main geomorphic factors that determine the development of RTSs along a 238km segment of the Yukon Coast, Canada. We (1) show the current extent of RTSs, (2) ascertain the factors controlling their activity and initiation, and (3) explain the spatial differences in the density and areal coverage of RTSs. We mapped and classified 287 RTSs using high-resolution satellite images acquired in 2011. We highlighted the main terrain controls over their development using univariate regression trees model. Coastal geomorphology influenced both the activity and initiation of RTSs: active RTSs and RTSs initiated after 1972 occurred primarily on terrains with slope angles greater than 3.9 degrees and 5.9 degrees, respectively. The density and areal coverage of RTSs were constrained by the volume and thickness of massive ice bodies. Differences in rates of coastal change along the coast did not affect the model. We infer that rates of coastal change averaged over a 39year period are unable to reflect the complex relationship between RTSs and coastline dynamics. We emphasize the need for large-scale studies of RTSs to evaluate their impact on the ecosystem and to measure their contribution to the global carbon budget. Plain Language Summary Retrogressive thaw slumps, henceforth slumps are a type of landslides that occur when permafrost thaws. Slumps are active landforms: they develop quickly and extend over several hectares. Satellite imagery allows to map such slumps over large areas. Our research shows where slumps develop along a 238 km segment of the Yukon Coast in Canada and explains which environments are most suitable for slump occurrence. We found that active and newly developed slumps were triggered where coastal slopes were greater than 3.9 degrees and 5.9 degrees, respectively. We explain that coastal erosion influences the development of slumps by modifying coastal slopes. We found that the highest density of slumps as well as the largest slumps occurred on terrains with high amounts of ice bodies in the ground. This study provides tools to better identify areas in the Arctic that are prone to slump development.}, language = {en} } @article{TanskiCoutureLantuitetal.2016, author = {Tanski, George and Couture, Nicole and Lantuit, Hugues and Eulenburg, Antje and Fritz, Michael}, title = {Eroding permafrost coasts release low amounts of dissolved organic carbon (DOC) from ground ice into the nearshore zone of the Arctic Ocean}, series = {Global biogeochemical cycles}, volume = {30}, journal = {Global biogeochemical cycles}, publisher = {American Geophysical Union}, address = {Cambridge}, issn = {0886-6236}, doi = {10.1002/2015GB005337}, pages = {1054 -- 1068}, year = {2016}, abstract = {Ice-rich permafrost coasts in the Arctic are highly sensitive to climate warming and erode at a pace that exceeds the global average. Permafrost coasts deliver vast amounts of organic carbon into the nearshore zone of the Arctic Ocean. Numbers on flux exist for particulate organic carbon (POC) and total or soil organic carbon (TOC, SOC). However, they do not exist for dissolved organic carbon (DOC), which is known to be highly bioavailable. This study aims to estimate DOC stocks in coastal permafrost as well as the annual flux into the ocean. DOC concentrations in ground ice were analyzed along the ice-rich Yukon coast (YC) in the western Canadian Arctic. The annual DOC flux was estimated using available numbers for coast length, cliff height, annual erosion rate, and volumetric ice content in different stratigraphic horizons. Our results showed that DOC concentrations in ground ice range between 0.3 and 347.0mgL(-1) with an estimated stock of 13.63.0gm(-3) along the YC. An annual DOC flux of 54.90.9Mgyr(-1) was computed. These DOC fluxes are low compared to POC and SOC fluxes from coastal erosion or POC and DOC fluxes from Arctic rivers. We conclude that DOC fluxes from permafrost coasts play a secondary role in the Arctic carbon budget. However, this DOC is assumed to be highly bioavailable. We hypothesize that DOC from coastal erosion is important for ecosystems in the Arctic nearshore zones, particularly in summer when river discharge is low, and in areas where rivers are absent.}, language = {en} }