@article{ChenLangeAndjelkovicetal.2022, author = {Chen, Junchao and Lange, Thomas and Andjelkovic, Marko and Simevski, Aleksandar and Lu, Li and Krstic, Milos}, title = {Solar particle event and single event upset prediction from SRAM-based monitor and supervised machine learning}, series = {IEEE transactions on emerging topics in computing / IEEE Computer Society, Institute of Electrical and Electronics Engineers}, volume = {10}, journal = {IEEE transactions on emerging topics in computing / IEEE Computer Society, Institute of Electrical and Electronics Engineers}, number = {2}, publisher = {Institute of Electrical and Electronics Engineers}, address = {[New York, NY]}, issn = {2168-6750}, doi = {10.1109/TETC.2022.3147376}, pages = {564 -- 580}, year = {2022}, abstract = {The intensity of cosmic radiation may differ over five orders of magnitude within a few hours or days during the Solar Particle Events (SPEs), thus increasing for several orders of magnitude the probability of Single Event Upsets (SEUs) in space-borne electronic systems. Therefore, it is vital to enable the early detection of the SEU rate changes in order to ensure timely activation of dynamic radiation hardening measures. In this paper, an embedded approach for the prediction of SPEs and SRAM SEU rate is presented. The proposed solution combines the real-time SRAM-based SEU monitor, the offline-trained machine learning model and online learning algorithm for the prediction. With respect to the state-of-the-art, our solution brings the following benefits: (1) Use of existing on-chip data storage SRAM as a particle detector, thus minimizing the hardware and power overhead, (2) Prediction of SRAM SEU rate one hour in advance, with the fine-grained hourly tracking of SEU variations during SPEs as well as under normal conditions, (3) Online optimization of the prediction model for enhancing the prediction accuracy during run-time, (4) Negligible cost of hardware accelerator design for the implementation of selected machine learning model and online learning algorithm. The proposed design is intended for a highly dependable and self-adaptive multiprocessing system employed in space applications, allowing to trigger the radiation mitigation mechanisms before the onset of high radiation levels.}, language = {en} } @article{LiBreitenreiterAndjelkovicetal.2020, author = {Li, Yuanqing and Breitenreiter, Anselm and Andjelkovic, Marko and Chen, Junchao and Babic, Milan and Krstić, Miloš}, title = {Double cell upsets mitigation through triple modular redundancy}, series = {Microelectronics Journal}, volume = {96}, journal = {Microelectronics Journal}, publisher = {Elsevier}, address = {Oxford}, issn = {0026-2692}, doi = {10.1016/j.mejo.2019.104683}, pages = {8}, year = {2020}, abstract = {A triple modular redundancy (TMR) based design technique for double cell upsets (DCUs) mitigation is investigated in this paper. This technique adds three extra self-voter circuits into a traditional TMR structure to enable the enhanced error correction capability. Fault-injection simulations show that the soft error rate (SER) of the proposed technique is lower than 3\% of that of TMR. The implementation of this proposed technique is compatible with the automatic digital design flow, and its applicability and performance are evaluated on an FIFO circuit.}, language = {en} } @article{SchrapeAndjelkovicBreitenreiteretal.2021, author = {Schrape, Oliver and Andjelkovic, Marko and Breitenreiter, Anselm and Zeidler, Steffen and Balashov, Alexey and Krstić, Miloš}, title = {Design and evaluation of radiation-hardened standard cell flip-flops}, series = {IEEE transactions on circuits and systems : a publication of the IEEE Circuits and Systems Society: 1, Regular papers}, volume = {68}, journal = {IEEE transactions on circuits and systems : a publication of the IEEE Circuits and Systems Society: 1, Regular papers}, number = {11}, publisher = {Inst. of Electr. and Electronics Engineers}, address = {New York, NY}, issn = {1549-8328}, doi = {10.1109/TCSI.2021.3109080}, pages = {4796 -- 4809}, year = {2021}, abstract = {Use of a standard non-rad-hard digital cell library in the rad-hard design can be a cost-effective solution for space applications. In this paper we demonstrate how a standard non-rad-hard flip-flop, as one of the most vulnerable digital cells, can be converted into a rad-hard flip-flop without modifying its internal structure. We present five variants of a Triple Modular Redundancy (TMR) flip-flop: baseline TMR flip-flop, latch-based TMR flip-flop, True-Single Phase Clock (TSPC) TMR flip-flop, scannable TMR flip-flop and self-correcting TMR flipflop. For all variants, the multi-bit upsets have been addressed by applying special placement constraints, while the Single Event Transient (SET) mitigation was achieved through the usage of customized SET filters and selection of optimal inverter sizes for the clock and reset trees. The proposed flip-flop variants feature differing performance, thus enabling to choose the optimal solution for every sensitive node in the circuit, according to the predefined design constraints. Several flip-flop designs have been validated on IHP's 130nm BiCMOS process, by irradiation of custom-designed shift registers. It has been shown that the proposed TMR flip-flops are robust to soft errors with a threshold Linear Energy Transfer (LET) from (32.4 MeV.cm(2)/mg) to (62.5 MeV.cm(2)/mg), depending on the variant.}, language = {en} }