@article{JayEckertVazdaCruzetal.2019, author = {Jay, Raphael Martin and Eckert, Sebastian and Vaz da Cruz, Vinicius and Fondell, Mattis and Mitzner, Rolf and F{\"o}hlisch, Alexander}, title = {Covalency-driven preservation of local charge densities in a metal-to-ligand charge-transfer excited iron photosensitizer}, series = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, volume = {58}, journal = {Angewandte Chemie : a journal of the Gesellschaft Deutscher Chemiker ; International edition}, number = {31}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1433-7851}, doi = {10.1002/anie.201904761}, pages = {10742 -- 10746}, year = {2019}, abstract = {Charge-density rearrangements after metal-to-ligand charge-transfer excitation in an iron photosensitizer are investigated by R. M Jay, A. Fohlisch et al. in their Communication (DOI: 10.1002/anie.201904761). By using time-resolved X-ray absorption spectroscopy, surprising covalency-effects are revealed that inhibit charge-separation at the intra-molecular level. Furthermore, the underlying mechanism is proposed to be generally in effect for all commonly used photosensitizers in light-harvesting applications, which challenges the common perception of electronic charge-transfer.}, language = {en} } @misc{NorellJayHantschmannetal.2018, author = {Norell, Jesper and Jay, Raphael Martin and Hantschmann, Markus and Eckert, Sebastian and Guo, Meiyuan and Gaffney, Kelly J. and Wernet, Philippe and Lundberg, Marcus and F{\"o}hlisch, Alexander and Odelius, Michael}, title = {Fingerprints of electronic, spin and structural dynamics from resonant inelastic soft X-ray scattering in transient photo-chemical species}, series = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Mathematisch-Naturwissenschaftliche Reihe}, number = {779}, issn = {1866-8372}, doi = {10.25932/publishup-43749}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-437493}, pages = {7243 -- 7253}, year = {2018}, abstract = {We describe how inversion symmetry separation of electronic state manifolds in resonant inelastic soft X-ray scattering (RIXS) can be applied to probe excited-state dynamics with compelling selectivity. In a case study of Fe L-3-edge RIXS in the ferricyanide complex Fe(CN)(6)(3-), we demonstrate with multi-configurational restricted active space spectrum simulations how the information content of RIXS spectral fingerprints can be used to unambiguously separate species of different electronic configurations, spin multiplicities, and structures, with possible involvement in the decay dynamics of photo-excited ligand-to-metal charge-transfer. Specifically, we propose that this could be applied to confirm or reject the presence of a hitherto elusive transient Quartet species. Thus, RIXS offers a particular possibility to settle a recent controversy regarding the decay pathway, and we expect the technique to be similarly applicable in other model systems of photo-induced dynamics.}, language = {en} }