@phdthesis{Ruch2010, author = {Ruch, Jo{\"e}l}, title = {Volcano deformation analysis in the Lazufre area (central Andes) using geodetic and geological observations}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-47361}, school = {Universit{\"a}t Potsdam}, year = {2010}, abstract = {Large-scale volcanic deformation recently detected by radar interferometry (InSAR) provides new information and thus new scientific challenges for understanding volcano-tectonic activity and magmatic systems. The destabilization of such a system at depth noticeably affects the surrounding environment through magma injection, ground displacement and volcanic eruptions. To determine the spatiotemporal evolution of the Lazufre volcanic area located in the central Andes, we combined short-term ground displacement acquired by InSAR with long-term geological observations. Ground displacement was first detected using InSAR in 1997. By 2008, this displacement affected 1800 km2 of the surface, an area comparable in size to the deformation observed at caldera systems. The original displacement was followed in 2000 by a second, small-scale, neighbouring deformation located on the Lastarria volcano. We performed a detailed analysis of the volcanic structures at Lazufre and found relationships with the volcano deformations observed with InSAR. We infer that these observations are both likely to be the surface expression of a long-lived magmatic system evolving at depth. It is not yet clear whether Lazufre may trigger larger unrest or volcanic eruptions; however, the second deformation detected at Lastarria and the clear increase of the large-scale deformation rate make this an area of particular interest for closer continuous monitoring.}, language = {en} }