@article{SchildrothRettigZimmermannKalketal.2011, author = {Schildroth, Janice and Rettig-Zimmermann, Juliane and Kalk, Philipp and Steege, Andreas and Faehling, Michael and Sendeski, Mauricio and Paliege, Alexander and Lai, En Yin and Bachmann, Sebastian and Persson, Pontus B. and Hocher, Berthold and Patzak, Andreas}, title = {Endothelin type A and B receptors in the control of afferent and efferent arterioles in mice}, series = {Nephrology, dialysis, transplantation}, volume = {26}, journal = {Nephrology, dialysis, transplantation}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0931-0509}, doi = {10.1093/ndt/gfq534}, pages = {779 -- 789}, year = {2011}, abstract = {Background. Endothelin 1 contributes to renal blood flow control and pathogenesis of kidney diseases. The differential effects, however, of endothelin 1 (ET-1) on afferent (AA) and efferent arterioles (EA) remain to be established. Methods. We investigated endothelin type A and B receptor (ETA-R, ETB-R) functions in the control of AA and EA. Arterioles of ETB-R deficient, rescued mice [ETB (-/-)] and wild types [ETB(+/+)] were microperfused. Results. ET-1 constricted AA stronger than EA in ETB (-/-) and ETB(+/+) mice. Results in AA: ET-1 induced similar constrictions in ETB(-/-) and ETB(+/+) mice. BQ-123 (ETA-R antagonist) inhibited this response in both groups. ALA-ET-1 and IRL1620 (ETB-R agonists) had no effect on arteriolar diameter. L-NAME did neither affect basal diameters nor ET-1 responses. Results in EA: ET-1 constricted EA stronger in ETB(+/+) compared to ETB(-/-). BQ-123 inhibited the constriction completely only in ETB(-/-). ALA-ET-1 and IRL1620 constricted only arterioles of ETB(+/+) mice. L-NAME decreased basal diameter in ETB(+/+), but not in ETB(-/-) mice and increased the ET-1 response similarly in both groups. The L-NAME actions indicate a contribution of ETB-R in basal nitric oxide (NO) release in EA and suggest dilatory action of ETA-R in EA. Conclusions. ETA-R mediates vasoconstriction in AA and contributes to vasoconstriction in EA in this mouse model. ETB-R has no effect in AA but mediates basal NO release and constriction in EA. The stronger effect of ET-1 on AA supports observations of decreased glomerular filtration rate to ET-1 and indicates a potential contribution of ET-1 to the pathogenesis of kidney diseases.}, language = {en} } @article{VignonZellwegerRelleKienlenetal.2011, author = {Vignon-Zellweger, Nicolas and Relle, Katharina and Kienlen, Elodie and Alter, Markus L. and Seider, Patrick and Sharkovska, Juliya and Heiden, Susi and Kalk, Philipp and Schwab, Karima and Albrecht-Kuepper, Barbara and Theuring, Franz and Stasch, Johannes-Peter and Hocher, Berthold}, title = {Endothelin-1 overexpression restores diastolic function in eNOS knockout mice}, series = {Journal of hypertension}, volume = {29}, journal = {Journal of hypertension}, number = {5}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {0263-6352}, doi = {10.1097/HJH.0b013e3283450770}, pages = {961 -- 970}, year = {2011}, abstract = {Background The cardiac nitric oxide and endothelin-1 (ET-1) systems are closely linked and play a critical role in cardiac physiology. The balance between both systems is often disturbed in cardiovascular diseases. To define the cardiac effect of excessive ET-1 in a status of nitric oxide deficiency, we compared left ventricular function and morphology in wild-type mice, ET-1 transgenic (ET+/+) mice, endothelial nitric oxide synthase knockout (eNOS(-/-)) mice, and ET(+/+)eNOS(-/-) mice. Methods and results eNOS(-/-) and ET(+/+)eNOS(-/-) mice developed high blood pressure compared with wild-type and ET+/+ mice. Left ventricular catheterization showed that eNOS(-/-) mice, but not ET(+/+)eNOS(-/-), developed diastolic dysfunction characterized by increased end-diastolic pressure and relaxation constant tau. To elucidate the causal molecular mechanisms driving the rescue of diastolic function in ET(+/+)eNOS(-/-) mice, the cardiac proteome was analyzed. Two-dimensional gel electrophoresis coupled to mass spectrometry offers an appropriate hypothesis-free approach. ET-1 overexpression on an eNOS(-/-) background led to an elevated abundance and change in posttranslational state of antioxidant enzymes (e. g., peroxiredoxin-6, glutathione S-transferase mu 2, and heat shock protein beta 7). In contrast to ET(+/+)eNOS(-/-) mice, eNOS(-/-) mice showed an elevated abundance of proteins responsible for sarcomere disassembly (e. g., cofilin-1 and cofilin-2). In ET(+/+)eNOS(-/-) mice, glycolysis was favored at the expense of fatty acid oxidation. Conclusion eNOS(-/-) mice developed diastolic dysfunction; this was rescued by ET-1 transgenic overexpression. This study furthermore suggests that cardiac ET-1 overexpression in case of eNOS deficiency causes specifically the regulation of proteins playing a role in oxidative stress, myocytes contractility, and energy metabolism.}, language = {en} }