@phdthesis{Schirneck2022, author = {Schirneck, Friedrich Martin}, title = {Enumeration algorithms in data profiling}, doi = {10.25932/publishup-55672}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-556726}, school = {Universit{\"a}t Potsdam}, pages = {xiv, 192}, year = {2022}, abstract = {Data profiling is the extraction of metadata from relational databases. An important class of metadata are multi-column dependencies. They come associated with two computational tasks. The detection problem is to decide whether a dependency of a given type and size holds in a database. The discovery problem instead asks to enumerate all valid dependencies of that type. We investigate the two problems for three types of dependencies: unique column combinations (UCCs), functional dependencies (FDs), and inclusion dependencies (INDs). We first treat the parameterized complexity of the detection variants. We prove that the detection of UCCs and FDs, respectively, is W[2]-complete when parameterized by the size of the dependency. The detection of INDs is shown to be one of the first natural W[3]-complete problems. We further settle the enumeration complexity of the three discovery problems by presenting parsimonious equivalences with well-known enumeration problems. Namely, the discovery of UCCs is equivalent to the famous transversal hypergraph problem of enumerating the hitting sets of a hypergraph. The discovery of FDs is equivalent to the simultaneous enumeration of the hitting sets of multiple input hypergraphs. Finally, the discovery of INDs is shown to be equivalent to enumerating the satisfying assignments of antimonotone, 3-normalized Boolean formulas. In the remainder of the thesis, we design and analyze discovery algorithms for unique column combinations. Since this is as hard as the general transversal hypergraph problem, it is an open question whether the UCCs of a database can be computed in output-polynomial time in the worst case. For the analysis, we therefore focus on instances that are structurally close to databases in practice, most notably, inputs that have small solutions. The equivalence between UCCs and hitting sets transfers the computational hardness, but also allows us to apply ideas from hypergraph theory to data profiling. We devise an discovery algorithm that runs in polynomial space on arbitrary inputs and achieves polynomial delay whenever the maximum size of any minimal UCC is bounded. Central to our approach is the extension problem for minimal hitting sets, that is, to decide for a set of vertices whether they are contained in any minimal solution. We prove that this is yet another problem that is complete for the complexity class W[3], when parameterized by the size of the set that is to be extended. We also give several conditional lower bounds under popular hardness conjectures such as the Strong Exponential Time Hypothesis (SETH). The lower bounds suggest that the running time of our algorithm for the extension problem is close to optimal. We further conduct an empirical analysis of our discovery algorithm on real-world databases to confirm that the hitting set perspective on data profiling has merits also in practice. We show that the resulting enumeration times undercut their theoretical worst-case bounds on practical data, and that the memory consumption of our method is much smaller than that of previous solutions. During the analysis we make two observations about the connection between databases and their corresponding hypergraphs. On the one hand, the hypergraph representations containing all relevant information are usually significantly smaller than the original inputs. On the other hand, obtaining those hypergraphs is the actual bottleneck of any practical application. The latter often takes much longer than enumerating the solutions, which is in stark contrast to the fact that the preprocessing is guaranteed to be polynomial while the enumeration may take exponential time. To make the first observation rigorous, we introduce a maximum-entropy model for non-uniform random hypergraphs and prove that their expected number of minimal hyperedges undergoes a phase transition with respect to the total number of edges. The result also explains why larger databases may have smaller hypergraphs. Motivated by the second observation, we present a new kind of UCC discovery algorithm called Hitting Set Enumeration with Partial Information and Validation (HPIValid). It utilizes the fast enumeration times in practice in order to speed up the computation of the corresponding hypergraph. This way, we sidestep the bottleneck while maintaining the advantages of the hitting set perspective. An exhaustive empirical evaluation shows that HPIValid outperforms the current state of the art in UCC discovery. It is capable of processing databases that were previously out of reach for data profiling.}, language = {en} } @phdthesis{Kruse2018, author = {Kruse, Sebastian}, title = {Scalable data profiling}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-412521}, school = {Universit{\"a}t Potsdam}, pages = {ii, 156}, year = {2018}, abstract = {Data profiling is the act of extracting structural metadata from datasets. Structural metadata, such as data dependencies and statistics, can support data management operations, such as data integration and data cleaning. Data management often is the most time-consuming activity in any data-related project. Its support is extremely valuable in our data-driven world, so that more time can be spent on the actual utilization of the data, e. g., building analytical models. In most scenarios, however, structural metadata is not given and must be extracted first. Therefore, efficient data profiling methods are highly desirable. Data profiling is a computationally expensive problem; in fact, most dependency discovery problems entail search spaces that grow exponentially in the number of attributes. To this end, this thesis introduces novel discovery algorithms for various types of data dependencies - namely inclusion dependencies, conditional inclusion dependencies, partial functional dependencies, and partial unique column combinations - that considerably improve over state-of-the-art algorithms in terms of efficiency and that scale to datasets that cannot be processed by existing algorithms. The key to those improvements are not only algorithmic innovations, such as novel pruning rules or traversal strategies, but also algorithm designs tailored for distributed execution. While distributed data profiling has been mostly neglected by previous works, it is a logical consequence on the face of recent hardware trends and the computational hardness of dependency discovery. To demonstrate the utility of data profiling for data management, this thesis furthermore presents Metacrate, a database for structural metadata. Its salient features are its flexible data model, the capability to integrate various kinds of structural metadata, and its rich metadata analytics library. We show how to perform a data anamnesis of unknown, complex datasets based on this technology. In particular, we describe in detail how to reconstruct the schemata and assess their quality as part of the data anamnesis. The data profiling algorithms and Metacrate have been carefully implemented, integrated with the Metanome data profiling tool, and are available as free software. In that way, we intend to allow for easy repeatability of our research results and also provide them for actual usage in real-world data-related projects.}, language = {en} } @phdthesis{Papenbrock2017, author = {Papenbrock, Thorsten}, title = {Data profiling - efficient discovery of dependencies}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-406705}, school = {Universit{\"a}t Potsdam}, pages = {viii, ii, 141}, year = {2017}, abstract = {Data profiling is the computer science discipline of analyzing a given dataset for its metadata. The types of metadata range from basic statistics, such as tuple counts, column aggregations, and value distributions, to much more complex structures, in particular inclusion dependencies (INDs), unique column combinations (UCCs), and functional dependencies (FDs). If present, these statistics and structures serve to efficiently store, query, change, and understand the data. Most datasets, however, do not provide their metadata explicitly so that data scientists need to profile them. While basic statistics are relatively easy to calculate, more complex structures present difficult, mostly NP-complete discovery tasks; even with good domain knowledge, it is hardly possible to detect them manually. Therefore, various profiling algorithms have been developed to automate the discovery. None of them, however, can process datasets of typical real-world size, because their resource consumptions and/or execution times exceed effective limits. In this thesis, we propose novel profiling algorithms that automatically discover the three most popular types of complex metadata, namely INDs, UCCs, and FDs, which all describe different kinds of key dependencies. The task is to extract all valid occurrences from a given relational instance. The three algorithms build upon known techniques from related work and complement them with algorithmic paradigms, such as divide \& conquer, hybrid search, progressivity, memory sensitivity, parallelization, and additional pruning to greatly improve upon current limitations. Our experiments show that the proposed algorithms are orders of magnitude faster than related work. They are, in particular, now able to process datasets of real-world, i.e., multiple gigabytes size with reasonable memory and time consumption. Due to the importance of data profiling in practice, industry has built various profiling tools to support data scientists in their quest for metadata. These tools provide good support for basic statistics and they are also able to validate individual dependencies, but they lack real discovery features even though some fundamental discovery techniques are known for more than 15 years. To close this gap, we developed Metanome, an extensible profiling platform that incorporates not only our own algorithms but also many further algorithms from other researchers. With Metanome, we make our research accessible to all data scientists and IT-professionals that are tasked with data profiling. Besides the actual metadata discovery, the platform also offers support for the ranking and visualization of metadata result sets. Being able to discover the entire set of syntactically valid metadata naturally introduces the subsequent task of extracting only the semantically meaningful parts. This is challenge, because the complete metadata results are surprisingly large (sometimes larger than the datasets itself) and judging their use case dependent semantic relevance is difficult. To show that the completeness of these metadata sets is extremely valuable for their usage, we finally exemplify the efficient processing and effective assessment of functional dependencies for the use case of schema normalization.}, language = {en} }